Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Research and Development, EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany.
Sci Rep. 2020 Aug 3;10(1):9795. doi: 10.1038/s41598-020-65958-2.
Exercise-induced pulmonary hemorrhage (EIPH) is a common condition in sport horses with negative impact on performance. Cytology of bronchoalveolar lavage fluid by use of a scoring system is considered the most sensitive diagnostic method. Macrophages are classified depending on the degree of cytoplasmic hemosiderin content. The current gold standard is manual grading, which is however monotonous and time-consuming. We evaluated state-of-the-art deep learning-based methods for single cell macrophage classification and compared them against the performance of nine cytology experts and evaluated inter- and intra-observer variability. Additionally, we evaluated object detection methods on a novel data set of 17 completely annotated cytology whole slide images (WSI) containing 78,047 hemosiderophages. Our deep learning-based approach reached a concordance of 0.85, partially exceeding human expert concordance (0.68 to 0.86, mean of 0.73, SD of 0.04). Intra-observer variability was high (0.68 to 0.88) and inter-observer concordance was moderate (Fleiss' kappa = 0.67). Our object detection approach has a mean average precision of 0.66 over the five classes from the whole slide gigapixel image and a computation time of below two minutes. To mitigate the high inter- and intra-rater variability, we propose our automated object detection pipeline, enabling accurate, reproducible and quick EIPH scoring in WSI.
运动性肺出血(EIPH)是竞技马的一种常见病症,对其运动表现有负面影响。采用评分系统对支气管肺泡灌洗液进行细胞学检查被认为是最敏感的诊断方法。根据细胞浆含铁血黄素含量的程度对巨噬细胞进行分类。目前的金标准是手动分级,但这种方法既单调又耗时。我们评估了基于深度学习的单细胞巨噬细胞分类的最新方法,并将其与九位细胞学专家的表现进行了比较,评估了观察者内和观察者间的可变性。此外,我们还在一个包含 78047 个含铁血黄素的全新的 17 张完全标注的细胞学全玻片图像(WSI)数据集上评估了目标检测方法。我们基于深度学习的方法达到了 0.85 的一致性,部分超过了人类专家的一致性(0.68 到 0.86,平均值为 0.73,标准差为 0.04)。观察者内的可变性很高(0.68 到 0.88),而观察者间的一致性中等(Fleiss' kappa = 0.67)。我们的目标检测方法在整个大像素图像的五个类别上的平均精度为 0.66,计算时间不到两分钟。为了减轻观察者内和观察者间的高可变性,我们提出了我们的自动目标检测管道,能够在 WSI 中进行准确、可重复和快速的 EIPH 评分。