Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China.
Nat Commun. 2024 Nov 25;15(1):10218. doi: 10.1038/s41467-024-54292-0.
Immune checkpoint blockade (ICB) therapy, while promising for cancer treatment, faces challenges like unexpected side effects and limited objective responses. Here, we develop an in vivo gene-editing strategy for improving ICB cancer therapy in a lastingly effective manner. The approach uses a conductive hydrogel-based electroporation system to enable nucleofection of programmed cell death protein 1 (PD1) targeted CRISPR-Cas9 DNAs into T-cells directly within the lymph nodes, and subsequently produces PD1-deficient T-cells to combat tumor growth, metastasis and recurrence in different melanoma models in mice. Following in vivo gene editing, animals show enhanced cellular and humoral immune responses along with multi-fold increases of effector T-cells infiltration to the solid tumors, preventing tumor recurrence and prolonging their survival. These findings provide a proof-of-concept for direct in vivo T-cell engineering via localized gene-editing for enhanced cancer immunotherapy, and also unlock the possibilities of using this method to treat more complex human diseases.
免疫检查点阻断 (ICB) 疗法在癌症治疗方面具有广阔前景,但也面临着一些挑战,如意外的副作用和有限的客观反应。在这里,我们开发了一种体内基因编辑策略,以持久有效的方式改善 ICB 癌症治疗。该方法使用基于导电水凝胶的电穿孔系统,将针对程序性死亡蛋白 1 (PD1) 的 CRISPR-Cas9 DNAs 直接转染到淋巴结内的 T 细胞中,随后产生 PD1 缺陷型 T 细胞,以抵抗不同黑色素瘤模型中肿瘤的生长、转移和复发。在体内基因编辑后,动物表现出增强的细胞和体液免疫反应,以及效应 T 细胞向实体瘤的浸润增加数倍,从而防止肿瘤复发并延长其存活时间。这些发现为通过局部基因编辑进行直接体内 T 细胞工程以增强癌症免疫治疗提供了概念验证,也为使用这种方法治疗更复杂的人类疾病开辟了可能性。