Suppr超能文献

基于双中心数据的 COVID-19 后肺实质异常预测模型。

A predictive model for post-COVID-19 pulmonary parenchymal abnormalities based on dual-center data.

机构信息

Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.

Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China.

出版信息

Sci Rep. 2024 Nov 26;14(1):29257. doi: 10.1038/s41598-024-79715-2.

Abstract

Documented radiological and physiological anomalies among coronavirus disease 2019 survivors necessitate prompt recognition of residual pulmonary parenchymal abnormalities for effective management of chronic pulmonary consequences. This study aimed to devise a predictive model to identify patients at risk of such abnormalities post-COVID-19. Our prognostic model was derived from a dual-center retrospective cohort comprising 501 hospitalized COVID-19 cases from July 2022 to March 2023. Of these, 240 patients underwent Chest CT scans three months post-infection. A predictive model was developed using stepwise regression based on the Akaike Information Criterion, incorporating clinical and laboratory parameters. The model was trained and validated on a split dataset, revealing a 33.3% incidence of pulmonary abnormalities. It achieved strong discriminatory power in the training set (area under the curve: 0.885, 95% confidence interval 0.832-0.938), with excellent calibration and decision curve analysis suggesting substantial net benefits across various threshold settings. We have successfully developed a reliable prognostic tool, complemented by a user-friendly nomogram, to estimate the probability of residual pulmonary parenchymal abnormalities three months post-COVID-19 infection. This model, demonstrating high performance, holds promise for guiding clinical interventions and improving the management of COVID-19-related pulmonary sequela.

摘要

在 2019 冠状病毒病幸存者中,有记录的放射学和生理学异常需要及时识别肺部实质残留异常,以有效管理慢性肺部后果。本研究旨在制定一种预测模型,以识别 COVID-19 后有此类异常风险的患者。我们的预后模型来自 2022 年 7 月至 2023 年 3 月期间在两个中心进行的回顾性队列研究,共纳入 501 例住院 COVID-19 病例,其中 240 例在感染后三个月接受了胸部 CT 扫描。该模型是基于 Akaike 信息准则的逐步回归法,结合临床和实验室参数而建立的。该模型在数据集分割上进行了训练和验证,结果显示 33.3%的患者存在肺部异常。在训练集上,该模型具有很强的判别能力(曲线下面积:0.885,95%置信区间 0.832-0.938),校准度和决策曲线分析均表现良好,提示在各种阈值设置下具有显著的净获益。我们成功开发了一种可靠的预后工具,并附有用户友好的列线图,用于估计 COVID-19 感染后三个月肺部实质残留异常的概率。该模型表现出较高的性能,有望为指导临床干预和改善 COVID-19 相关肺部后遗症的管理提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7bb/11589148/5fcaa288e265/41598_2024_79715_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验