Suppr超能文献

甘蓝型油菜微菜芽银纳米粒子的绿色合成、表征、安全性评估和抗菌活性。

Green synthesis of Brassica carinata microgreen silver nanoparticles, characterization, safety assessment, and antimicrobial activities.

机构信息

Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology, and Innovation (PAUSTI), P.O. Box 62000-00200, Nairobi, Kenya.

Laboratory of Molecular Biology and Genetics (LABIOGENE), Joseph Ki-Zerbo University, P.O. Box 7021, Ouagadougou 03, Burkina Faso.

出版信息

Sci Rep. 2024 Nov 26;14(1):29273. doi: 10.1038/s41598-024-80528-6.

Abstract

Nanotechnology has been a central focus of scientific investigation over the past decades owing to its versatile applications. The synthesis of silver nanoparticles (AgNPs) through plant secondary metabolites is a cost-effective and eco-friendly approach. The present study employed Brassica carinata microgreen extracts (BCME) to promote the reduction of silver nitrate (AgNO) salt into Brassica carinata microgreen silver nanoparticles (BCM-AgNPs). The physicochemical properties of the biosynthesized AgNPs were characterized through both spectroscopy and microscopy techniques. Furthermore, the antimicrobial property of the biosynthesized AgNPs was assessed against six selected pathogenic microorganisms, and finally, their safety was evaluated on a normal Vero cell line through an MTT cytotoxicity assay. The UV-visible spectrum revealed that BCM-AgNPs exhibited an absorption peak at 420 nm. The potential functional groups involved in the biosynthesis of AgNPs were identified by Fourier transform infrared (FTIR) analysis. Scanning electron microscopy (SEM) revealed a spherical nature of the biosynthesized AgNPs. Transmission electron microscopy (TEM) analysis revealed the crystallinity of the AgNPs, averaging 34.68 nm in size. X-ray diffraction (XRD) investigation further confirmed the crystalline structure of the AgNPs. The zeta potential exhibited a significant value of - 22.5 ± 1.16 mV. Regarding the antimicrobial potential, BCM-AgNPs exhibited promising antimicrobial activity against the tested pathogens, with a minimum inhibitory concentration (MIC) of 62.5 µg/mL observed in Pseudomonas aeruginosa. Further cytotoxicity assessment of BCM-AgNPs conducted on Vero cells demonstrated their safety. This study presents a novel approach to synthesizing AgNPs using a nutraceutical microgreen, offering a biocompatible and promising alternative for combating multi-drug resistance.

摘要

纳米技术因其多功能的应用而成为过去几十年科学研究的焦点。通过植物次生代谢物合成银纳米粒子(AgNPs)是一种具有成本效益和环保的方法。本研究采用油菜微绿体提取物(BCME)促进硝酸银(AgNO)盐还原为油菜微绿体银纳米粒子(BCM-AgNPs)。通过光谱和显微镜技术对生物合成的 AgNPs 的物理化学性质进行了表征。此外,评估了生物合成的 AgNPs 对六种选定的致病微生物的抗菌性能,最后通过 MTT 细胞毒性测定法在正常 Vero 细胞系上评估了其安全性。紫外可见光谱显示 BCM-AgNPs 在 420nm 处有一个吸收峰。傅里叶变换红外(FTIR)分析鉴定了参与 AgNPs 生物合成的潜在功能团。扫描电子显微镜(SEM)显示生物合成的 AgNPs 呈球形。透射电子显微镜(TEM)分析显示 AgNPs 的结晶度,平均粒径为 34.68nm。X 射线衍射(XRD)研究进一步证实了 AgNPs 的结晶结构。Zeta 电位显示出显著的-22.5±1.16 mV 值。关于抗菌潜力,BCM-AgNPs 对测试的病原体表现出有希望的抗菌活性,在铜绿假单胞菌中观察到最小抑菌浓度(MIC)为 62.5μg/mL。进一步在 Vero 细胞上进行的 BCM-AgNPs 细胞毒性评估表明其安全性。本研究提出了一种使用营养微绿体合成 AgNPs 的新方法,为对抗多药耐药性提供了一种生物相容性和有前途的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84db/11589588/8f51ced09416/41598_2024_80528_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验