文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

海洋藻类生物合成银纳米粒子的抗癌和抗菌活性。

Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles.

机构信息

Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.

Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.

出版信息

Sci Rep. 2022 Feb 14;12(1):2421. doi: 10.1038/s41598-022-06412-3.


DOI:10.1038/s41598-022-06412-3
PMID:35165346
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8844081/
Abstract

Biosynthesis of silver nanoparticles (AgNPs) is emerging as a simple and eco-friendly alternative to conventional chemical synthesis methods. The role of AgNPs is expanding as antimicrobial and anticancer agents, sensors, nanoelectronic devices, and imaging contrast agents. In this study, biogenic AgNPs were synthesized using extracts of different marine algae species, including Ulva rigida (green alga), Cystoseira myrica (brown alga), and Gracilaria foliifera (red alga), as reducing and capping agents. The Physiochemical properties, cytotoxicity, anticancer and antimicrobial activities of the biosynthesized AgNPs were assessed. Surface plasmonic bands of the biosynthesized AgNPs capped with U. rigida, C. myrica, and G. foliifera extracts were visually observed to determine a colour change, and their peaks were observed at 424 nm, 409 nm, and 415 nm, respectively, by UV-Vis spectroscopy; transmission electron microscopy (TEM) indicated an almost spherical shape of AgNPs with nanoscale sizes of 12 nm, 17 nm, and 24 nm, respectively. Fourier transform-infrared (FTIR) spectroscopy analysis suggested that different molecules attached to AgNPs through OH, C=O, and amide groups. The major constituents of the aqueous algal extracts included, terpenoids, polyphenols, sulfonates, polysaccharides, fatty acids, chlorophylls, amide proteins, flavonoids, carotenoids, aliphatic fluoro compounds, volatile compounds, alkalines, pyruvic acid and agar groups. The cytotoxicity and anticancer activities of the biosynthesized AgNPs were assessed using Artemia salina nauplii, normal skin cell lines (HFb-4), and breast cancer cell lines (MCF-7 cell line). The lethality was found to be directly proportional to the AgNP concentration. The IC values of C. myrica and G. foliifera AgNPs against A. saline nauplii were 5 and 10 μg ml after 4 h and 16 h, respectively, whereas U. rigida AgNPs did not exhibit cytotoxic effects. Anticancer activity of the biosynthesized AgNPs was dose dependent. The IC values of the biosynthesized AgNPs were 13, 13, and 43 µg ml for U. rigida, C. myrica, and G. foliifera, respectively. U. rigida AgNPs particularly exhibited potent anticancer activity (92.62%) against a human breast adenocarcinoma cell line (MCF-7) with high selectivity compared the normal cells (IC = 13 µg/ml, SI = 3.2), followed by C. myrica AgNPs (IC = 13 µg/ml, SI = 3.07). Furthermore, the biosynthesized AgNPs exhibited strong antifungal activity against dermatophyte pathogenic moulds and mild antibacterial activity against the food borne pathogen bacteria. The highest antimicrobial activity was recorded for the U. rigida AgNPs, followed by those capped with C. myrica and G. foliifera extracts, respectively. AgNPs capped with the U. rigida extract exhibited the highest antimicrobial activity against Trichophyton mantigrophytes (40 mm), followed by Trichosporon cataneum (30 mm) and E. coli (19 mm), with minimal lethal concentration of 32 and 64 μg ml respectively. The study finally revealed that extracts of marine algal species, particularly U. rigida extracts, could be effectively used as reducing agents for the green synthesis of AgNPs. These AgNPs are considered efficient alternative antidermatophytes for skin infections and anticancer agents against the MCF-7 cell line.

摘要

生物合成银纳米粒子(AgNPs)作为一种替代传统化学合成方法的简单、环保的方法正在兴起。AgNPs 的作用正在扩大,作为抗菌和抗癌剂、传感器、纳米电子器件和成像对比剂。在这项研究中,使用不同海洋藻类物种的提取物,包括绿藻(绿藻)、石莼(褐藻)和龙须菜(红藻)作为还原和封端剂来合成生物合成的 AgNPs。评估了生物合成的 AgNPs 的物理化学性质、细胞毒性、抗癌和抗菌活性。用 U. rigida、C. myrica 和 G. foliifera 提取物封端的生物合成的 AgNPs 的表面等离子体带通过紫外-可见光谱观察到颜色变化,其峰值分别在 424nm、409nm 和 415nm 处观察到;透射电子显微镜(TEM)表明 AgNPs 呈近球形,纳米尺寸分别为 12nm、17nm 和 24nm。傅里叶变换-红外(FTIR)光谱分析表明,不同的分子通过 OH、C=O 和酰胺基团附着在 AgNPs 上。水藻提取物的主要成分包括萜类化合物、多酚、磺酸盐、多糖、脂肪酸、叶绿素、酰胺蛋白、类黄酮、类胡萝卜素、脂肪族氟化合物、挥发性化合物、生物碱、丙酮酸和琼脂组。用卤虫幼体、正常皮肤细胞系(HFb-4)和乳腺癌细胞系(MCF-7 细胞系)评估了生物合成的 AgNPs 的细胞毒性和抗癌活性。致死率与 AgNP 浓度成正比。C. myrica 和 G. foliifera AgNPs 对 A. saline nauplii 的 IC 值分别为 4 小时和 16 小时后 5 和 10μg/ml,而 U. rigida AgNPs 没有表现出细胞毒性。生物合成的 AgNPs 的抗癌活性呈剂量依赖性。生物合成的 AgNPs 的 IC 值分别为 13、13 和 43μg/ml,用于 U. rigida、C. myrica 和 G. foliifera。U. rigida AgNPs 对人乳腺癌细胞系(MCF-7)表现出特别强的抗癌活性(92.62%),与正常细胞相比具有高选择性(IC=13μg/ml,SI=3.2),其次是 C. myrica AgNPs(IC=13μg/ml,SI=3.07)。此外,生物合成的 AgNPs 对皮肤真菌病原体真菌具有很强的抗真菌活性,对食源性病原体细菌具有温和的抗菌活性。U. rigida AgNPs 的抗菌活性最高,其次是用 C. myrica 和 G. foliifera 提取物封端的 AgNPs。用 U. rigida 提取物封端的 AgNPs 对毛癣菌属(40mm)表现出最高的抗菌活性,其次是 Trichosporon cataneum(30mm)和大肠杆菌(19mm),最小致死浓度分别为 32 和 64μg/ml。该研究最终表明,海洋藻类物种的提取物,特别是 U. rigida 提取物,可有效用作 AgNPs 绿色合成的还原剂。这些 AgNPs 被认为是对抗 MCF-7 细胞系的有效替代抗真菌药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/35b1f574dda0/41598_2022_6412_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/20808d867997/41598_2022_6412_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/157fd0b66e6f/41598_2022_6412_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/e7da71acdc6e/41598_2022_6412_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/a48b78a2c258/41598_2022_6412_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/4b030d485534/41598_2022_6412_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/96294ada9b78/41598_2022_6412_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/ad6353b79b96/41598_2022_6412_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/1a0cf0e9d5a8/41598_2022_6412_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/c93fd55ec744/41598_2022_6412_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/6a76a91cdc8c/41598_2022_6412_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/31e8bdc1fe9b/41598_2022_6412_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/35b1f574dda0/41598_2022_6412_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/20808d867997/41598_2022_6412_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/157fd0b66e6f/41598_2022_6412_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/e7da71acdc6e/41598_2022_6412_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/a48b78a2c258/41598_2022_6412_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/4b030d485534/41598_2022_6412_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/96294ada9b78/41598_2022_6412_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/ad6353b79b96/41598_2022_6412_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/1a0cf0e9d5a8/41598_2022_6412_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/c93fd55ec744/41598_2022_6412_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/6a76a91cdc8c/41598_2022_6412_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/31e8bdc1fe9b/41598_2022_6412_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba1/8844081/35b1f574dda0/41598_2022_6412_Fig12_HTML.jpg

相似文献

[1]
Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles.

Sci Rep. 2022-2-14

[2]
Biogenic Synthesis of Silver Nanoparticles using (Decne): Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities.

Pharm Nanotechnol. 2023

[3]
Insight into the molecular mechanism, cytotoxic, and anticancer activities of phyto-reduced silver nanoparticles in MCF-7 breast cancer cell lines.

Microsc Res Tech. 2024-7

[4]
A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract.

J Photochem Photobiol B. 2020-7

[5]
Green synthesized silver nanoparticles mediated by Fusarium nygamai isolate AJTYC1: characterizations, antioxidant, antimicrobial, anticancer, and photocatalytic activities and cytogenetic effects.

Environ Sci Pollut Res Int. 2023-9

[6]
Cytotoxicity against human breast carcinoma cells of silver nanoparticles biosynthesized using Capsosiphon fulvescens extract.

Bioprocess Biosyst Eng. 2021-4

[7]
Green Synthesis of Dracocephalum kotschyi-Coated Silver Nanoparticles: Antimicrobial, Antioxidant, and Anticancer Potentials.

Med Sci Monit. 2024-10-3

[8]
Green Synthesis of Silver Nanoparticles Using Extract of L. Leaves and Evaluation of Cytotoxic Activity Towards Bladder (5637) and Breast Cancer (MCF-7) Cell Lines.

Int J Nanomedicine. 2020-12-4

[9]
Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera.

Mater Sci Eng C Mater Biol Appl. 2018-4-4

[10]
Green Synthesis of Silver Nanoparticles of Leaf Extract and their Cytotoxicity Activity against Neuroblastoma SHSY-5Y Cell Lines, Antimicrobial and Antioxidant Studies.

Recent Pat Nanotechnol. 2023

引用本文的文献

[1]
Green synthesis of gamma rays-induced melanin-based bismuth oxide nanoparticles for evaluation of the antibacterial and anti-virulence activities against extra-intestinal pathogenic bacteria.

World J Microbiol Biotechnol. 2025-8-26

[2]
Tackling carbapenem-resistant (CRAB) and their virulence factors using biosynthesized silver nanoparticles combined with imipenem.

Biotechnol Notes. 2025-7-19

[3]
Unlocking the dual healing powers of plant-based metallic nanoparticles: managing diabetes and tackling male infertility challenges.

Front Endocrinol (Lausanne). 2025-7-4

[4]
Green-synthesized silver-copper nanocomposites from Sargassum latifolium: antibacterial, anticancer, and in silico pharmacokinetic evaluation.

Med Oncol. 2025-7-16

[5]
Green Synthesis of Antimicrobial Silver Nanoparticles (AgNPs) from the Mucus of the Garden Snail .

Molecules. 2025-5-13

[6]
Green synthesis of silver nanoparticles using cocoon extract of Bombyx mori L.: therapeutic potential in antibacterial, antioxidant, anti-inflammatory, and anti-tumor applications.

BMC Biotechnol. 2025-5-14

[7]
Utilization of Ulva rigida for Fabrication of Iron Oxide Nanoparticles and Its Physicochemical Characterization.

Appl Biochem Biotechnol. 2025-4-29

[8]
Harnessing nature for dual action: silver nanoparticles synthesized from guava leaf extract for photocatalytic degradation of methyl red and antibacterial applications.

RSC Adv. 2025-4-25

[9]
Biosynthesis of silver nanoparticles by Talaromyces funiculosus for therapeutic applications and safety evaluation.

Sci Rep. 2025-4-21

[10]
Biosynthesis of silver nanoparticles from macroalgae Hormophysa triquetra and investigation of its antibacterial activity and mechanism against pathogenic bacteria.

Sci Rep. 2025-1-20

本文引用的文献

[1]
Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants.

Front Microbiol. 2020-6-23

[2]
Green synthesis of silver nanoparticle using sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity.

Heliyon. 2019-10-13

[3]
Algae-based metallic nanoparticles: Synthesis, characterization and applications.

J Microbiol Methods. 2019-6-17

[4]
Mechanisms of Action of Novel Drugs Targeting Angiogenesis-Promoting Matrix Metalloproteinases.

Front Immunol. 2019-6-4

[5]
Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using .

Int J Nanomedicine. 2019-3-15

[6]
Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review.

J Genet Eng Biotechnol. 2016-12

[7]
Cytotoxic Activity of Fatty Acids From Antarctic Macroalgae on the Growth of Human Breast Cancer Cells.

Front Bioeng Biotechnol. 2018-12-3

[8]
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2018-9-12

[9]
Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens.

Molecules. 2018-3-14

[10]
Phyto-assisted synthesis of bio-functionalised silver nanoparticles and their potential anti-oxidant, anti-microbial and wound healing activities.

IET Nanobiotechnol. 2017-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索