Suppr超能文献

利用连续小波变换推进夏玉米氮营养指数估算

Advancing nitrogen nutrition index estimation in summer maize using continuous wavelet transform.

作者信息

Wang Mingxia, Zhao Ben, Jiang Nan, Li Huan, Cai Jiumao

机构信息

School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China.

College of Tobacco Science, Henan Agricultural University, Zhengzhou, China.

出版信息

Front Plant Sci. 2024 Nov 11;15:1478162. doi: 10.3389/fpls.2024.1478162. eCollection 2024.

Abstract

Rapid and non-destructive diagnosis of plant nitrogen (N) status is crucial to optimize N management during the growth of summer maize. This study aimed to evaluate the effectiveness of continuous wavelet analysis (CWA) in estimating the nitrogen nutrition index (NNI), to determine the most suitable wavelet analysis method, and to identify the most sensitive wavelet features across the visible to near-infrared spectrum (325-1,025 nm) for accurate NNI estimation. Field experiments were conducted across two sites (Kaifeng and Weishi) during the 2022 and 2023 growing seasons using four summer maize cultivars (XD20, ZD958, DH661, and DH605) under varying N application rates (0, 80, 160, 240, and 320 kg N ha). Canopy reflectance spectra and plant samples were collected from the V6 to V12 growth stages. The wavelet features for each spectral band were calculated across different scales using the CWA method, and their relationships with NNI, plant dry matter (PDM), and plant N concentration (PNC) were analyzed using four regression models. The results showed that NNI varied from 0.61 to 1.19 across different N treatments during the V6 to V12 stages, and the Mexican Hat wavelet was identified as the most suitable mother wavelet, achieving an value of 0.73 for NNI assessment. The wavelet features derived from the Mexican Hat wavelet were effective in estimating NNI, PDM, and PNC under varying N treatments, with the most sensitive wavelet features identified as 745 nm at scale 7 for NNI, 819 nm at scale 5 for PDM, and 581 nm at scale 6 for PNC using linear regression models. The direct and indirect methods for NNI estimation were compared using independent field data sets. Both methods proved valid to predict NNI in summer maize, with relative root mean square errors of 10.8% for the direct method and 13.4% for the indirect method. The wavelet feature at 745 nm, scale 7, from the direct method (NNI = 0.14 WF (745 nm, 7) + 0.3) was found to be simpler and more accurate for NNI calculation. These findings provide new insights into the application of the CWA method for precise spectral estimation of plant N status in summer maize.

摘要

快速无损诊断夏玉米生长期间的植株氮素状况对于优化氮肥管理至关重要。本研究旨在评估连续小波分析(CWA)在估算氮素营养指数(NNI)方面的有效性,确定最合适的小波分析方法,并识别在可见光至近红外光谱(325 - 1025 nm)范围内对准确估算NNI最敏感的小波特征。在2022年和2023年生长季,于开封和尉氏两个地点开展田间试验,使用四个夏玉米品种(XD20、ZD958、DH661和DH605),设置不同施氮量(0、80、160、240和320 kg N ha)。在V6至V12生长阶段采集冠层反射光谱和植株样本。使用CWA方法在不同尺度上计算每个光谱波段的小波特征,并使用四种回归模型分析它们与NNI、植株干物质(PDM)和植株氮浓度(PNC)的关系。结果表明,在V6至V12阶段,不同施氮处理下NNI在0.61至1.19之间变化,墨西哥帽小波被确定为最合适的母小波,用于NNI评估时 值达到0.73。源自墨西哥帽小波的小波特征在不同施氮处理下有效估算了NNI、PDM和PNC,使用线性回归模型确定,对于NNI,尺度7下745 nm处的小波特征最敏感;对于PDM,尺度5下819 nm处的小波特征最敏感;对于PNC,尺度6下581 nm处的小波特征最敏感。使用独立田间数据集比较了NNI估算的直接法和间接法。两种方法在预测夏玉米NNI方面均有效,直接法的相对均方根误差为10.8%,间接法为13.4%。发现直接法(NNI = 0.14 WF (745 nm, 7) + 0.3)中尺度7下745 nm处的小波特征在计算NNI时更简单且更准确。这些发现为CWA方法在夏玉米植株氮素状况精确光谱估算中的应用提供了新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e23/11586213/dfccbe073988/fpls-15-1478162-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验