Zhang Jiongyu, Guan Xin, Moon Jeong, Zhang Shuo, Jia Zhengyang, Yang Rui, Hou Chengyu, Guo Chong, Pei Minjie, Liu Changchun
Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.
Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
Nucleic Acids Res. 2024 Dec 11;52(22):14077-14092. doi: 10.1093/nar/gkae1124.
While CRISPR has revolutionized biotechnology, predicting CRISPR-Cas nuclease activity remains a challenge. Herein, through the trans-cleavage feature of CRISPR-Cas12a, we investigate the correlation between CRISPR enzyme kinetics and the free energy change of crRNA and DNA targets from their initial thermodynamic states to a presumed transition state before hybridization. By subjecting computationally designed CRISPR RNAs (crRNAs), we unravel a linear correlation between the trans-cleavage kinetics of Cas12a and the energy barrier for crRNA spacer and single-stranded DNA target unwinding. This correlation shifts to a parabolic relationship with the energy consumption required for double-stranded DNA target separation. We further validate these correlations using ∼100 randomly selected crRNA/DNA pairs from viral genomes. Through machine learning methods, we reveal the synergistic effect of free energy change of crRNA and DNA on categorizing Cas12a activity on a two-dimensional map. Furthermore, by examining other potential factors, we find that the free energy change is the predominant factor governing Cas12a kinetics. This study will not only empower sequence design for numerous applications of CRISPR-Cas12a systems, but can also extend to activity prediction for a variety of enzymatic reactions driven by nucleic acid dynamics.
虽然CRISPR彻底改变了生物技术,但预测CRISPR-Cas核酸酶的活性仍然是一项挑战。在此,通过CRISPR-Cas12a的反式切割特性,我们研究了CRISPR酶动力学与crRNA和DNA靶标从其初始热力学状态到杂交前假定过渡态的自由能变化之间的相关性。通过对计算设计的CRISPR RNA(crRNA)进行研究,我们揭示了Cas12a的反式切割动力学与crRNA间隔区和单链DNA靶标解旋的能量屏障之间的线性相关性。这种相关性随着双链DNA靶标分离所需的能量消耗而转变为抛物线关系。我们使用从病毒基因组中随机选择的约100个crRNA/DNA对进一步验证了这些相关性。通过机器学习方法,我们揭示了crRNA和DNA自由能变化在二维图上对Cas12a活性分类的协同作用。此外,通过研究其他潜在因素,我们发现自由能变化是控制Cas12a动力学的主要因素。这项研究不仅将助力CRISPR-Cas12a系统众多应用的序列设计,还可扩展到由核酸动力学驱动的各种酶促反应的活性预测。