Speyer Lydia G, Zhu Xinxin, Yang Yi, Ribeaud Denis, Eisner Manuel
Department of Psychology, Lancaster University, Lancaster, UK.
Department of Psychology, University of Edinburgh, Edinburgh, UK.
Multivariate Behav Res. 2025 Mar-Apr;60(2):328-344. doi: 10.1080/00273171.2024.2428222. Epub 2024 Nov 26.
Random-intercept cross-lagged panel models (RI-CLPMs) are increasingly used to investigate research questions focusing on how one variable at one time point affects another variable at the subsequent time point. Due to the implied temporal sequence of events in such research designs, interpretations of RI-CLPMs primarily focus on longitudinal cross-lagged paths while disregarding concurrent associations and modeling these only as residual covariances. However, this may cause biased cross-lagged effects. This may be especially so when data collected at the same time point refers to different reference timeframes, creating a temporal sequence of events for constructs measured concurrently. To examine this issue, we conducted a series of empirical analyses in which the impact of modeling or not modeling of directional within-time point associations may impact inferences drawn from RI-CLPMs using data from the longitudinal z-proso study. Results highlight that not considering directional concurrent effects may lead to biased cross-lagged effects. Thus, it is essential to carefully consider potential directional concurrent effects when choosing models to analyze directional associations between variables over time. If temporal sequences of concurrent effects cannot be clearly established, testing multiple models and drawing conclusions based on the robustness of effects across all models is recommended.
随机截距交叉滞后面板模型(RI-CLPMs)越来越多地用于研究聚焦于一个时间点的一个变量如何影响后续时间点的另一个变量的研究问题。由于此类研究设计中事件隐含的时间顺序,RI-CLPMs的解释主要集中在纵向交叉滞后路径上,而忽略了同时期关联,仅将其建模为残差协方差。然而,这可能会导致有偏差的交叉滞后效应。当在同一时间点收集的数据涉及不同的参考时间框架时,情况可能尤其如此,这会为同时测量的构念创建一个事件的时间顺序。为了研究这个问题,我们进行了一系列实证分析,其中对时间点内方向性关联进行建模或不建模的影响,可能会影响使用纵向z-proso研究的数据从RI-CLPMs得出的推论。结果表明,不考虑方向性同时期效应可能会导致有偏差的交叉滞后效应。因此,在选择模型来分析变量随时间的方向性关联时,仔细考虑潜在的方向性同时期效应至关重要。如果无法明确确定同时期效应的时间顺序,建议测试多个模型,并根据所有模型中效应的稳健性得出结论。