文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

黏膜屏障系统在维持肠道共生以预防肠道炎症中的作用。

The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation.

机构信息

Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.

WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.

出版信息

Semin Immunopathol. 2024 Nov 26;47(1):2. doi: 10.1007/s00281-024-01026-5.


DOI:10.1007/s00281-024-01026-5
PMID:39589551
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11599372/
Abstract

In the intestinal tract, where numerous intestinal bacteria reside, intestinal epithelial cells produce and release various antimicrobial molecules that form a complex barrier on the mucosal surface. These barrier molecules can be classified into two groups based on their functions: those that exhibit bactericidal activity through chemical reactions, such as antimicrobial peptides, and those that physically hinder bacterial invasion, like mucins, which lack bactericidal properties. In the small intestine, where Paneth cells specialize in producing antimicrobial peptides, the chemical barrier molecules primarily inhibit bacterial growth. In contrast, in the large intestine, where Paneth cells are absent, allowing bacterial growth, the primary defense mechanism is the physical barrier, mainly composed of mucus, which controls bacterial movement and prevents their invasion of intestinal tissues. The expression of these barrier molecules is regulated by metabolites produced by bacteria in the intestinal lumen and cytokines produced by immune cells in the lamina propria. This regulation establishes a defense mechanism that adapts to changes in the intestinal environment, such as alterations in gut microbial composition and the presence of pathogenic bacterial infections. Consequently, when the integrity of the gut mucosal barrier is compromised, commensal bacteria and pathogenic microorganisms from outside the body can invade intestinal tissues, leading to conditions such as intestinal inflammation, as observed in cases of inflammatory bowel disease.

摘要

在肠道中,存在着大量的肠道细菌,肠道上皮细胞会产生并释放各种抗菌分子,这些分子在黏膜表面形成一个复杂的屏障。这些屏障分子可以根据其功能分为两类:一类是通过化学反应表现出杀菌活性的抗菌肽,另一类是物理上阻碍细菌入侵的物质,如缺乏杀菌特性的粘蛋白。在小肠中,潘氏细胞专门产生抗菌肽,化学屏障分子主要抑制细菌生长。相比之下,在大肠中,潘氏细胞不存在,允许细菌生长,主要的防御机制是物理屏障,主要由黏液组成,控制细菌的运动并防止其侵犯肠组织。这些屏障分子的表达受到肠道腔中细菌产生的代谢物和固有层免疫细胞产生的细胞因子的调节。这种调节建立了一种适应肠道环境变化的防御机制,例如肠道微生物组成的改变和致病性细菌感染的存在。因此,当肠道黏膜屏障的完整性受到损害时,肠道内的共生细菌和来自体外的病原微生物可以侵犯肠道组织,导致肠道炎症等疾病,如炎症性肠病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301b/11599372/353f8a6f5db0/281_2024_1026_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301b/11599372/d364e68c51ab/281_2024_1026_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301b/11599372/4d19dcbe45d3/281_2024_1026_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301b/11599372/353f8a6f5db0/281_2024_1026_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301b/11599372/d364e68c51ab/281_2024_1026_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301b/11599372/4d19dcbe45d3/281_2024_1026_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301b/11599372/353f8a6f5db0/281_2024_1026_Fig3_HTML.jpg

相似文献

[1]
The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation.

Semin Immunopathol. 2024-11-26

[2]
Microbiota-dependent modulation of intestinal anti-inflammatory CD4 T cell responses.

Semin Immunopathol. 2025-4-1

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Bacteria enable tolerance to bile salt exposure in an immune-competent human intestinal model.

Gut Microbes. 2025-12

[5]
The pasteurized Weissella cibaria alleviates sepsis-induced acute lung injury by modulation of intestinal mucus barrier and gut microbiota.

J Transl Med. 2025-6-17

[6]
Intestinal biomarkers, microbiota composition, and genetic predisposition to inflammatory bowel disease as predictors of Parkinson's disease manifestation.

J Parkinsons Dis. 2025-5-7

[7]
Butyrolactone-I from marine fungi alleviates intestinal barrier damage caused by DSS through regulating lactobacillus johnsonii and its metabolites in the intestine of mice.

J Nutr Biochem. 2025-1

[8]
The role of glycans in health and disease: Regulators of the interaction between gut microbiota and host immune system.

Semin Immunol. 2024-5

[9]
Synbiotics, prebiotics and probiotics for solid organ transplant recipients.

Cochrane Database Syst Rev. 2022-9-20

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

引用本文的文献

[1]
Galactooligosaccharides Promote Gut Barrier Integrity and Exert Anti-Inflammatory Effects in DSS-Induced Colitis Through Microbiota Modulation.

Int J Mol Sci. 2025-8-18

[2]
Angiogenic Factors and Inflammatory Bowel Diseases.

Biomedicines. 2025-5-9

[3]
Role of Antioxidants in Modulating the Microbiota-Gut-Brain Axis and Their Impact on Neurodegenerative Diseases.

Int J Mol Sci. 2025-4-12

[4]
Protective Effects of a Polyherbal Mixture on Intestinal Injury via the NF-κB Signaling Pathway and Gut Microbiota Modulation in Hyperuricemic Mice.

Foods. 2025-3-24

[5]
Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation.

Front Immunol. 2025-3-3

[6]
The Interplay of Nutrition, the Gut Microbiota and Immunity and Its Contribution to Human Disease.

Biomedicines. 2025-1-31

本文引用的文献

[1]
Distal colonocytes targeted by C. rodentium recruit T-cell help for barrier defence.

Nature. 2024-5

[2]
IgA-mediated control of host-microbial interaction during weaning reaction influences gut inflammation.

Gut Microbes. 2024

[3]
IgG and IgM cooperate in coating of intestinal bacteria in IgA deficiency.

Nat Commun. 2023-12-8

[4]
Differential dependence on microbiota of IL-23/IL-22-dependent gene expression between the small- and large-intestinal epithelia.

Genes Cells. 2023-11

[5]
Sialylation shapes mucus architecture inhibiting bacterial invasion in the colon.

Mucosal Immunol. 2023-10

[6]
Antibiofilm properties of cathelicidin LL-37: an in-depth review.

World J Microbiol Biotechnol. 2023-2-14

[7]
Identification of a unique subset of tissue-resident memory CD4 T cells in Crohn's disease.

Proc Natl Acad Sci U S A. 2023-1-3

[8]
Fucosyltransferase 2: A Genetic Risk Factor for Intestinal Diseases.

Front Microbiol. 2022-7-18

[9]
Identification of Crucial Amino Acid Residues for Antimicrobial Activity of Angiogenin 4 and Its Modulation of Gut Microbiota in Mice.

Front Microbiol. 2022-6-6

[10]
The impact of the gut microbiome on extra-intestinal autoimmune diseases.

Nat Rev Immunol. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索