Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Adv Neurobiol. 2024;41:133-149. doi: 10.1007/978-3-031-69188-1_6.
The human brain's complexity is underpinned by billions of neurons and trillions of synapses, necessitating coordinated activities across diverse cell types. Conventional techniques like in situ hybridization and immunohistochemistry, while valuable, face limitations in resolution and comprehensiveness when analyzing neuron types. Advances in spatial omics technologies, especially those integrating transcriptomics and proteomics, have revolutionized our understanding of brain tissue organization. These technologies, such as FISH-based, in situ sequencing-based (ISS), and next-generation sequencing (NGS)-based methods, provide detailed spatial context, overcoming previous limitations. FISH techniques, including smFISH and its variants like seqFISH and MERFISH, offer high-resolution spatial gene expression data. ISS approaches leverage padlock probes and rolling circle amplification to yield spatial transcriptome information. NGS-based methods, such as spatial transcriptomics and spatial-epigenomics, integrate spatial barcodes with single-cell sequencing, enabling comprehensive profiling of gene expression and epigenetic states in tissues. These innovations have propelled insights into neural development and disease, identifying cellular heterogeneity and molecular alterations in conditions like Alzheimer's and major depression. Despite challenges in cost, speed, and data analysis, spatial omics technologies continue to evolve, promising deeper insights into the molecular mechanisms of the brain and neurodegenerative diseases.
人类大脑的复杂性由数十亿个神经元和数万亿个突触支撑,需要不同细胞类型的协调活动。尽管原位杂交和免疫组织化学等传统技术具有重要价值,但在分析神经元类型时,它们在分辨率和全面性方面存在局限性。空间组学技术的进步,特别是转录组学和蛋白质组学相结合的技术,极大地改变了我们对脑组织组织的理解。这些技术,如基于 FISH、基于原位测序 (ISS) 和基于下一代测序 (NGS) 的方法,提供了详细的空间背景,克服了以前的局限性。FISH 技术,包括 smFISH 及其变体,如 seqFISH 和 MERFISH,提供了高分辨率的空间基因表达数据。ISS 方法利用锁式探针和滚环扩增来获得空间转录组信息。基于 NGS 的方法,如空间转录组学和空间表观基因组学,将空间条形码与单细胞测序相结合,能够全面分析组织中的基因表达和表观遗传状态。这些创新推动了对神经发育和疾病的深入了解,确定了阿尔茨海默病和重度抑郁症等疾病中的细胞异质性和分子改变。尽管在成本、速度和数据分析方面存在挑战,但空间组学技术仍在不断发展,有望更深入地了解大脑的分子机制和神经退行性疾病。