Department of Sociology and Office of Population Research, Princeton University, Princeton, NJ 08544.
Steinhardt School of Culture, Education, and Human Development, Department of Applied Statistics, Social Science, and Humanities, New York University, New York, NY 10003.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2405725121. doi: 10.1073/pnas.2405725121. Epub 2024 Nov 26.
The identification of causal relationships between specific genes and social, behavioral, and health outcomes is challenging due to environmental confounding from population stratification and dynastic genetic effects. Existing methods to eliminate environmental confounding leverage random genetic variation resulting from recombination and require within-family dyadic genetic data (i.e., parent-child and/or sibling pairs), meaning they can only be applied in relatively small and selected samples. We introduce the model and provide derivations showing that it-under plausible assumptions-provides consistent (and, in certain cases, unbiased) estimates of genetic effects using just a single individual's genotype. Then, leveraging distinct samples of fully and partially genotyped sibling pairs in the Wisconsin Longitudinal Study, we use polygenic indices and phenotypic data for 24 different traits to empirically validate the phenotype differences model. Finally, we utilize the model to test the effects of 40 polygenic indices on lifespan. After a 10% false discovery rate correction, we find that polygenic indices for three traits-body mass index, self-rated health, chronic obstructive pulmonary disease-have a statistically significant effect on an individual's lifespan.
由于人群分层和家族遗传效应带来的环境混杂,特定基因与社会行为和健康结果之间的因果关系的识别具有挑战性。现有的消除环境混杂的方法利用了重组产生的随机遗传变异,并需要来自家庭内的对偶遗传数据(即,父母-子女和/或兄弟姐妹对),这意味着它们只能应用于相对较小和选定的样本中。我们介绍了 模型,并提供了推导,表明在合理的假设下,它仅使用单个个体的基因型就能提供一致(并且在某些情况下是无偏的)遗传效应估计。然后,利用威斯康星纵向研究中完全和部分基因分型的兄弟姐妹对的不同样本,我们使用多基因指数和 24 种不同特征的表型数据来实证验证表型差异模型。最后,我们利用该模型测试 40 个多基因指数对寿命的影响。经过 10%的错误发现率校正,我们发现三个特征(体重指数、自我评估健康状况、慢性阻塞性肺疾病)的多基因指数对个体的寿命有统计学意义的影响。