School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae616.
MicroRNAs (miRNAs) are critical regulators in various biological processes to cleave or repress translation of messenger RNAs (mRNAs). Accurately predicting miRNA targets is essential for developing miRNA-based therapies for diseases such as cancer and cardiovascular disease. Traditional miRNA target prediction methods often struggle due to incomplete knowledge of miRNA-target interactions and lack interpretability. To address these limitations, we propose miCGR, an end-to-end deep learning framework for predicting functional miRNA targets. MiCGR employs 2D convolutional neural networks alongside an enhanced Chaos Game Representation (CGR) of both miRNA sequences and their candidate target site (CTS) on mRNA. This advanced CGR transforms genetic sequences into informative 2D graphical representations based on sequence composition and subsequence frequencies, and explicitly incorporates important prior knowledge of seed regions and subsequence positions. Unlike one-dimensional methods based solely on sequence characters, this approach identifies functional motifs within sequences, even if they are distant in the original sequences. Our model outperforms existing methods in predicting functional targets at both the site and gene levels. To enhance interpretability, we incorporate Shapley value analysis for each subsequence within both miRNA sequences and their target sites, allowing miCGR to achieve improved accuracy, particularly with more lenient CTS selection criteria. Finally, two case studies demonstrate the practical applicability of miCGR, highlighting its potential to provide insights for optimizing artificial miRNA analogs that surpass endogenous counterparts.
微小 RNA(miRNAs)是各种生物过程中的关键调节因子,可切割或抑制信使 RNA(mRNA)的翻译。准确预测 miRNA 靶标对于开发基于 miRNA 的癌症和心血管疾病等疾病的治疗方法至关重要。由于 miRNA-靶相互作用的知识不完整以及缺乏可解释性,传统的 miRNA 靶标预测方法往往难以准确预测。为了解决这些限制,我们提出了 miCGR,这是一种用于预测功能性 miRNA 靶标的端到端深度学习框架。miCGR 采用二维卷积神经网络以及 miRNA 序列及其在 mRNA 上的候选靶位(CTS)的增强混沌游戏表示(CGR)。这种先进的 CGR 基于序列组成和子序列频率将遗传序列转换为信息丰富的 2D 图形表示,并明确包含种子区域和子序列位置的重要先验知识。与仅基于序列字符的一维方法不同,该方法即使在原始序列中距离很远,也能识别序列中的功能基序。我们的模型在预测功能靶位方面在靶位和基因水平上均优于现有方法。为了增强可解释性,我们在 miRNA 序列及其靶位中的每个子序列中都纳入了 Shapley 值分析,这使得 miCGR 能够实现更高的准确性,特别是在更宽松的 CTS 选择标准下。最后,两个案例研究证明了 miCGR 的实际适用性,突出了其为优化超越内源性 miRNA 模拟物的人工 miRNA 模拟物提供见解的潜力。