School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae554.
Major depressive disorder (MDD) is a severe psychiatric disorder that currently lacks any objective diagnostic markers. Here, we develop a deep learning approach to discover the mass spectrometric features that can discriminate MDD patients from health controls. Using plasma peptides, the neural network, termed as CMS-Net, can perform diagnosis and prediction with an accuracy of 0.9441. The sensitivity and specificity reached 0.9352 and 0.9517 respectively, and the area under the curve was enhanced to 0.9634. Using the gradient-based feature importance method to interpret crucial features, we identify 28 differential peptide sequences from 14 precursor proteins (e.g. hemoglobin, immunoglobulin, albumin, etc.). This work highlights the possibility of molecular diagnosis of MDD with the aid of chemical and computer science.
重度抑郁症(MDD)是一种严重的精神疾病,目前缺乏任何客观的诊断标志物。在这里,我们开发了一种深度学习方法来发现可以区分 MDD 患者和健康对照的质谱特征。使用血浆肽,神经网络称为 CMS-Net,可以以 0.9441 的准确率进行诊断和预测。灵敏度和特异性分别达到 0.9352 和 0.9517,曲线下面积提高到 0.9634。使用基于梯度的特征重要性方法来解释关键特征,我们从 14 种前体蛋白中鉴定出 28 种差异肽序列(例如血红蛋白、免疫球蛋白、白蛋白等)。这项工作强调了借助化学和计算机科学进行 MDD 分子诊断的可能性。