Suppr超能文献

采用深度学习方法通过血浆肽实现对重度抑郁症的分子诊断。

Toward molecular diagnosis of major depressive disorder by plasma peptides using a deep learning approach.

机构信息

School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.

CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae554.

Abstract

Major depressive disorder (MDD) is a severe psychiatric disorder that currently lacks any objective diagnostic markers. Here, we develop a deep learning approach to discover the mass spectrometric features that can discriminate MDD patients from health controls. Using plasma peptides, the neural network, termed as CMS-Net, can perform diagnosis and prediction with an accuracy of 0.9441. The sensitivity and specificity reached 0.9352 and 0.9517 respectively, and the area under the curve was enhanced to 0.9634. Using the gradient-based feature importance method to interpret crucial features, we identify 28 differential peptide sequences from 14 precursor proteins (e.g. hemoglobin, immunoglobulin, albumin, etc.). This work highlights the possibility of molecular diagnosis of MDD with the aid of chemical and computer science.

摘要

重度抑郁症(MDD)是一种严重的精神疾病,目前缺乏任何客观的诊断标志物。在这里,我们开发了一种深度学习方法来发现可以区分 MDD 患者和健康对照的质谱特征。使用血浆肽,神经网络称为 CMS-Net,可以以 0.9441 的准确率进行诊断和预测。灵敏度和特异性分别达到 0.9352 和 0.9517,曲线下面积提高到 0.9634。使用基于梯度的特征重要性方法来解释关键特征,我们从 14 种前体蛋白中鉴定出 28 种差异肽序列(例如血红蛋白、免疫球蛋白、白蛋白等)。这项工作强调了借助化学和计算机科学进行 MDD 分子诊断的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6957/11596692/c4025801f616/bbae554f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验