Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, China.
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
Nat Commun. 2024 Nov 26;15(1):10241. doi: 10.1038/s41467-024-54325-8.
Shrinking the size of photoelectrodes into the nanoscale will enable the precise modulation of cellular and subcellular behaviors of a single neuron and neural circuits. However, compared to photovoltaic devices, the reduced size causes the compromised efficiencies. Here, we present a highly efficient nanoelectrode based on bimetallic zinc and gold porphyrin (ZnAuPN). Upon light excitation, we observe ultrafast energy transfer (66 ps) and charge transfer (0.5 ps) through the porphyrin ring, enabling 97% efficiency in separating and transferring photoinduced charges to single Au-atom centers. Leveraging these isolated Au atoms as stimulating electrode arrays, we achieve significant photocurrent injection in single neurons, triggering action potential with millisecond light pulses. Notably, Extracranial near-infrared light irradiation of the motor cortex induces neuronal firing and enhances mouse movement. These results show the potential of nanoscale optoelectrodes for high spatiotemporal modulation of neuronal networks without the need for gene transfection in optogenetics.
将光电电极缩小到纳米级将能够精确调节单个神经元和神经网络的细胞和亚细胞行为。然而,与光伏器件相比,尺寸的减小导致效率降低。在这里,我们提出了一种基于双金属锌和金卟啉(ZnAuPN)的高效纳米电极。在光激发下,我们观察到通过卟啉环的超快能量转移(66 ps)和电荷转移(0.5 ps),从而实现将光生电荷分离并转移到单个 Au 原子中心的 97%的效率。利用这些孤立的 Au 原子作为刺激电极阵列,我们在单个神经元中实现了显著的光电流注入,通过毫秒级的光脉冲触发动作电位。值得注意的是,颅外近红外光照射运动皮层可诱导神经元放电并增强小鼠运动。这些结果表明,纳米光电电极在无需基因转染的情况下,具有对神经网络进行高时空调制的潜力,可用于光遗传学。