Suppr超能文献

新生儿脑连接组中的脑龄预测及与规范轨迹的偏差

Brain age prediction and deviations from normative trajectories in the neonatal connectome.

作者信息

Sun Huili, Mehta Saloni, Khaitova Milana, Cheng Bin, Hao Xuejun, Spann Marisa, Scheinost Dustin

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.

出版信息

Nat Commun. 2024 Nov 26;15(1):10251. doi: 10.1038/s41467-024-54657-5.

Abstract

Structural and functional connectomes undergo rapid changes during the third trimester and the first month of postnatal life. Despite progress, our understanding of the developmental trajectories of the connectome in the perinatal period remains incomplete. Brain age prediction uses machine learning to estimate the brain's maturity relative to normative data. The difference between the individual's predicted and chronological age-or brain age gap (BAG)-represents the deviation from these normative trajectories. Here, we assess brain age prediction and BAGs using structural and functional connectomes for infants in the first month of life. We use resting-state fMRI and DTI data from 611 infants (174 preterm; 437 term) from the Developing Human Connectome Project (dHCP) and connectome-based predictive modeling to predict postmenstrual age (PMA). Structural and functional connectomes accurately predict PMA for term and preterm infants. Predicted ages from each modality are correlated. At the network level, nearly all canonical brain networks-even putatively later developing ones-generate accurate PMA prediction. Additionally, BAGs are associated with perinatal exposures and toddler behavioral outcomes. Overall, our results underscore the importance of normative modeling and deviations from these models during the perinatal period.

摘要

在孕晚期及出生后第一个月,结构连接组和功能连接组会经历快速变化。尽管取得了进展,但我们对围产期连接组发育轨迹的理解仍不完整。脑龄预测利用机器学习来估计大脑相对于标准数据的成熟度。个体预测年龄与实际年龄之间的差异,即脑龄差距(BAG),代表了与这些标准轨迹的偏差。在此,我们使用出生后第一个月婴儿的结构和功能连接组来评估脑龄预测和脑龄差距。我们使用了来自发育中人类连接组计划(dHCP)的611名婴儿(174名早产儿;437名足月儿)的静息态功能磁共振成像和扩散张量成像数据,并基于连接组的预测模型来预测月经龄(PMA)。结构和功能连接组能够准确预测足月儿和早产儿的月经龄。来自每种模态的预测年龄具有相关性。在网络层面,几乎所有典型的脑网络——甚至包括假定较晚发育的网络——都能生成准确的月经龄预测。此外,脑龄差距与围产期暴露及幼儿行为结果相关。总体而言,我们的结果强调了标准建模以及围产期与这些模型的偏差的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9940/11599754/dd9a3687f48b/41467_2024_54657_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验