Suppr超能文献

整合单细胞RNA测序与人工智能用于肝癌耐药性多靶点药物设计。

Integrating single-cell RNA sequencing and artificial intelligence for multitargeted drug design for combating resistance in liver cancer.

作者信息

Wang Houhong, Yang Youyuan, Zhang Junfeng, Chen Wenli, Dai Jingyou, Li Changquan, Li Qing

机构信息

Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui Province, China.

Department of General Surgery, The Affiliated first Hospital of fuyang Normal University, Fuyang Normal University, Fuyang, Anhui Province, China.

出版信息

NPJ Precis Oncol. 2025 Sep 2;9(1):309. doi: 10.1038/s41698-025-00952-3.

Abstract

Hepatocellular carcinoma (HCC) is an aggressive and heterogeneous liver cancer with restricted therapy selections and poor diagnosis. Although there have been great advances in genomics, the molecular mechanisms essential to HCC progression are not yet fully implicit, particularly at the single-cell stage. This research utilized single-cell RNA sequencing technology to evaluate transcriptional heterogeneity, immune cell infiltration, and potential therapeutic targets in HCC. A detailed bioinformatics pipeline used in the experiment included quality control, feature selection, dimensionality reduction using Principal Component Analysis (PCA), Uniform Manifold Approximation and Projection (UMAP), and t-distributed stochastic neighbor embedding (t-SNE), clustering, differential gene expression, pseudotime trajectory inference, and immune cell profiling with GSEA and survival analysis examining potential biomarkers of survival. Key findings include the identification of 1178 differentially expressed genes (DEGs), with macrophage infiltration contributing to immune evasion. Notably, APOE and ALB are linked to a better prognosis, while XIST and FTL are associated with poor survival. The potential drug candidates include IGMESINE in the case of SERPINA1 and PKR-A/MITZ for APOA2 in the gene-drug interaction analysis. Graph Neural Network (GNN) is used to predict drug-gene interactions and rank potential therapeutic candidates. The model shows robust predictive performance (R²: 0.9867, MSE: 0.0581) and identifies important drug candidates, such as Gadobenate Dimeglumine and Fluvastatin, and describes repurposing opportunities in network analysis, enhancing computational drug discovery for novel treatments. This research sheds new light on HCC tumor evolution, immune suppression, and the potential drug target based on the viewpoint of the importance of single-cell approaches in liver cancer research.

摘要

肝细胞癌(HCC)是一种侵袭性且异质性的肝癌,治疗选择有限且诊断效果不佳。尽管基因组学取得了巨大进展,但HCC进展所必需的分子机制尚未完全明了,尤其是在单细胞水平。本研究利用单细胞RNA测序技术评估HCC中的转录异质性、免疫细胞浸润和潜在治疗靶点。实验中使用的详细生物信息学流程包括质量控制、特征选择、使用主成分分析(PCA)、均匀流形近似和投影(UMAP)以及t分布随机邻域嵌入(t-SNE)进行降维、聚类、差异基因表达分析、伪时间轨迹推断,以及通过基因集富集分析(GSEA)进行免疫细胞分析和生存分析以检查潜在的生存生物标志物。主要发现包括鉴定出1178个差异表达基因(DEG),巨噬细胞浸润导致免疫逃逸。值得注意的是,载脂蛋白E(APOE)和白蛋白(ALB)与较好的预后相关,而X染色体失活特异转录本(XIST)和铁蛋白轻链(FTL)与较差的生存率相关。在基因-药物相互作用分析中,潜在的候选药物包括针对丝氨酸蛋白酶抑制剂A1(SERPINA1)的伊格美新(IGMESINE)和针对载脂蛋白A2(APOA2)的PKR-A/MITZ。图神经网络(GNN)用于预测药物-基因相互作用并对潜在治疗候选物进行排名。该模型显示出强大的预测性能(R²:0.9867,均方误差:0.0581),并识别出重要的候选药物,如钆喷酸葡胺和氟伐他汀,并在网络分析中描述了重新利用的机会,增强了新型治疗的计算药物发现。基于单细胞方法在肝癌研究中的重要性观点,本研究为HCC肿瘤演变、免疫抑制和潜在药物靶点提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8b9/12405525/cf6a08b80258/41698_2025_952_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验