Webber Matthew S, Watson Jamison, Zhu Jie, Jang Jun Hee, Çağlayan Mustafa, Heyne Joshua S, Beckham Gregg T, Román-Leshkov Yuriy
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
Nat Mater. 2024 Dec;23(12):1622-1638. doi: 10.1038/s41563-024-02024-6. Epub 2024 Nov 26.
Lignin is an abundant source of renewable aromatics that has long been targeted for valorization. Traditionally, the inherent heterogeneity and reactivity of lignin has relegated it to direct combustion, but its higher energy density compared with polysaccharides makes it an ideal candidate for biofuel production. This Review critically assesses lignin's potential as a substrate for sustainable aviation fuel blendstocks. Lignin can generate the necessary cyclic compounds for a fully renewable, sustainable aviation fuel when integrated with current paraffinic blends and can meet the current demand 2.5 times over. Using an energy-centric analysis, we show that lignin conversion technologies have the near-term potential to match the enthalpic yields of existing commercial sustainable aviation fuel production processes. Key factors influencing the viability of technologies for converting lignin to sustainable aviation fuel include lignin structure, delignification extent, depolymerization performance, and the development of stable and tunable deoxygenation catalysts.
木质素是一种丰富的可再生芳烃来源,长期以来一直是增值的目标。传统上,木质素固有的异质性和反应性使其只能用于直接燃烧,但与多糖相比,其更高的能量密度使其成为生物燃料生产的理想候选物。本综述批判性地评估了木质素作为可持续航空燃料调合组分底物的潜力。当与当前的石蜡基调合物结合时,木质素可以生成用于完全可再生、可持续航空燃料的必要环状化合物,并且能够满足当前需求的2.5倍。通过以能源为中心的分析,我们表明木质素转化技术在短期内有可能与现有商业可持续航空燃料生产工艺的焓产率相匹配。影响将木质素转化为可持续航空燃料的技术可行性的关键因素包括木质素结构、脱木质素程度、解聚性能以及稳定且可调的脱氧催化剂的开发。