Huang Katherine, G C de Sá Alex, Thomas Natalie, Phair Robert D, Gooley Paul R, Ascher David B, Armstrong Christopher W
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, QLD, Australia.
Commun Med (Lond). 2024 Nov 26;4(1):248. doi: 10.1038/s43856-024-00669-7.
Diagnosing complex illnesses like Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is complicated due to the diverse symptomology and presence of comorbid conditions. ME/CFS patients often present with multiple health issues, therefore, incorporating comorbidities into research can provide a more accurate understanding of the condition's symptomatology and severity, to better reflect real-life patient experiences.
We performed association studies and machine learning on 1194 ME/CFS individuals with blood plasma nuclear magnetic resonance (NMR) metabolomics profiles, and seven exclusive comorbid cohorts: hypertension (n = 13,559), depression (n = 2522), asthma (n = 6406), irritable bowel syndrome (n = 859), hay fever (n = 3025), hypothyroidism (n = 1226), migraine (n = 1551) and a non-diseased control group (n = 53,009).
We present a lipoprotein perspective on ME/CFS pathophysiology, highlighting gender-specific differences and identifying overlapping associations with comorbid conditions, specifically surface lipids, and ketone bodies from 168 significant individual biomarker associations. Additionally, we searched for, trained, and optimised a machine learning algorithm, resulting in a predictive model using 19 baseline characteristics and nine NMR biomarkers which could identify ME/CFS with an AUC of 0.83 and recall of 0.70. A multi-variable score was subsequently derived from the same 28 features, which exhibited ~2.5 times greater association than the top individual biomarker.
This study provides an end-to-end analytical workflow that explores the potential clinical utility that association scores may have for ME/CFS and other difficult to diagnose conditions.
肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)等复杂疾病的诊断较为复杂,因为其症状多样且常伴有合并症。ME/CFS患者通常存在多种健康问题,因此,将合并症纳入研究可以更准确地了解该疾病的症状学和严重程度,以更好地反映现实生活中患者的经历。
我们对1194名具有血浆核磁共振(NMR)代谢组学谱的ME/CFS个体,以及七个独立的合并症队列进行了关联研究和机器学习,这些队列包括高血压(n = 13559)、抑郁症(n = 2522)、哮喘(n = 6406)、肠易激综合征(n = 859)、花粉症(n = 3025)、甲状腺功能减退(n = 1226)、偏头痛(n = 1551)和一个非疾病对照组(n = 53009)。
我们从脂蛋白角度阐述了ME/CFS的病理生理学,突出了性别差异,并确定了与合并症的重叠关联,特别是从168个显著的个体生物标志物关联中发现了表面脂质和酮体。此外,我们搜索、训练并优化了一种机器学习算法,得到了一个使用19个基线特征和9个NMR生物标志物的预测模型,该模型识别ME/CFS的曲线下面积(AUC)为0.83,召回率为0.70。随后从相同的28个特征中得出一个多变量评分,其关联性比最显著的个体生物标志物高约2.5倍。
本研究提供了一个端到端的分析工作流程,探索了关联评分对ME/CFS和其他难以诊断的疾病可能具有的潜在临床效用。