Hogg Henry David Jeffry, Brittain Katie, Talks James, Keane Pearse Andrew, Maniatopoulos Gregory
Research, Development and Innovation, University Hospitals Birmingham NHS Foundation Trust, Level 2 ITM, Queen Elizabeth HospitalMindelsohn Way, Birmingham, B15 2GW, UK.
Department of Applied Health Research, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK.
Implement Sci Commun. 2024 Nov 26;5(1):131. doi: 10.1186/s43058-024-00667-9.
Neovascular age-related macular degeneration (nAMD) is one of the largest single-disease contributors to hospital outpatient appointments. Challenges in finding the clinical capacity to meet this demand can lead to sight-threatening delays in the macular services that provide treatment. Clinical artificial intelligence (AI) technologies pose one opportunity to rebalance demand and capacity in macular services. However, there is a lack of evidence to guide early-adopters seeking to use AI as a solution to demand-capacity imbalance. This study aims to provide guidance for these early adopters on how AI-enabled macular services may best be implemented by exploring what will influence the outcome of AI implementation and why.
Thirty-six semi-structured interviews were conducted with participants. Data were analysed with the Nonadoption, Abandonment, Scale-up, Spread and Sustainability (NASSS) framework to identify factors likely to influence implementation outcomes. These factors and the primary data then underwent a secondary analysis using the Fit between Individuals, Technology and Task (FITT) framework to propose an actionable intervention.
nAMD treatment should be initiated at face-to-face appointments with clinicians who recommend year-long periods of AI-enabled scheduling of treatments. This aims to maintain or enhance the quality of patient communication, whilst reducing consultation frequency. Appropriately trained photographers should take on the additional roles of inputting retinal imaging into the AI device and overseeing its communication to clinical colleagues, while ophthalmologists assume clinical oversight and consultation roles. Interoperability to facilitate this intervention would best be served by imaging equipment that can send images to the cloud securely for analysis by AI tools. Picture Archiving and Communication Software (PACS) should have the capability to output directly into electronic medical records (EMR) familiar to clinical and administrative staff.
There are many enablers to implementation and few of the remaining barriers relate directly to the AI technology itself. The proposed intervention requires local tailoring and prospective evaluation but can support early adopters in optimising the chances of success from initial efforts to implement AI-enabled macular services.
Hogg HDJ, Brittain K, Teare D, Talks J, Balaskas K, Keane P, Maniatopoulos G. Safety and efficacy of an artificial intelligence-enabled decision tool for treatment decisions in neovascular age-related macular degeneration and an exploration of clinical pathway integration and implementation: protocol for a multi-methods validation study. BMJ Open. 2023 Feb 1;13(2):e069443. https://doi.org/10.1136/bmjopen-2022-069443 . PMID: 36725098; PMCID: PMC9896175.
新生血管性年龄相关性黄斑变性(nAMD)是导致医院门诊预约量增加的主要单一疾病之一。在寻找满足这一需求的临床能力方面面临的挑战,可能会导致提供治疗的黄斑服务出现威胁视力的延误。临床人工智能(AI)技术为平衡黄斑服务的需求和能力提供了一个机会。然而,缺乏证据来指导早期采用者将AI作为解决需求与能力失衡问题的方案。本研究旨在通过探索哪些因素会影响AI实施的结果以及原因,为这些早期采用者提供关于如何最好地实施AI辅助黄斑服务的指导。
对参与者进行了36次半结构化访谈。使用未采用、放弃、扩大规模、传播和可持续性(NASSS)框架对数据进行分析,以确定可能影响实施结果的因素。然后,这些因素和原始数据使用个体、技术和任务之间的适配性(FITT)框架进行二次分析,以提出可采取行动的干预措施。
nAMD治疗应在与临床医生的面对面预约时启动,临床医生建议对治疗进行为期一年的AI辅助安排。这旨在保持或提高患者沟通的质量,同时减少会诊频率。经过适当培训的摄影师应承担将视网膜成像输入AI设备并监督其与临床同事沟通的额外职责,而眼科医生则承担临床监督和会诊职责。能够将图像安全发送到云端以供AI工具分析的成像设备最有助于实现这种干预的互操作性。图像存档与通信软件(PACS)应具备直接输出到临床和行政人员熟悉的电子病历(EMR)的能力。
实施过程中有许多促成因素,其余的障碍中很少有直接与AI技术本身相关的。所提出的干预措施需要根据当地情况进行调整和前瞻性评估,但可以支持早期采用者优化实施AI辅助黄斑服务的初步努力的成功机会。
霍格HDJ、布里顿K、蒂尔D、 Talks J、巴拉斯卡斯K、基恩P、马尼阿托普洛斯G。用于新生血管性年龄相关性黄斑变性治疗决策的人工智能决策工具的安全性和有效性以及临床路径整合与实施的探索:一项多方法验证研究的方案。《英国医学杂志公开版》。2023年2月1日;13(2):e069443。https://doi.org/10.1136/bmjopen-2022-069443 。PMID:36725098;PMCID:PMC989