Suppr超能文献

眼科医生对人工智能在眼保健中可用性的接受度与认知度(APPRAISE):多国视角

Acceptance and Perception of Artificial Intelligence Usability in Eye Care (APPRAISE) for Ophthalmologists: A Multinational Perspective.

作者信息

Gunasekeran Dinesh V, Zheng Feihui, Lim Gilbert Y S, Chong Crystal C Y, Zhang Shihao, Ng Wei Yan, Keel Stuart, Xiang Yifan, Park Ki Ho, Park Sang Jun, Chandra Aman, Wu Lihteh, Campbel J Peter, Lee Aaron Y, Keane Pearse A, Denniston Alastair, Lam Dennis S C, Fung Adrian T, Chan Paul R V, Sadda SriniVas R, Loewenstein Anat, Grzybowski Andrzej, Fong Kenneth C S, Wu Wei-Chi, Bachmann Lucas M, Zhang Xiulan, Yam Jason C, Cheung Carol Y, Pongsachareonnont Pear, Ruamviboonsuk Paisan, Raman Rajiv, Sakamoto Taiji, Habash Ranya, Girard Michael, Milea Dan, Ang Marcus, Tan Gavin S W, Schmetterer Leopold, Cheng Ching-Yu, Lamoureux Ecosse, Lin Haotian, van Wijngaarden Peter, Wong Tien Y, Ting Daniel S W

机构信息

Singapore Eye Research Institute (SERI), Singapore National Eye Center (SNEC), Singapore, Singapore.

School of Medicine, National University of Singapore (NUS), Singapore, Singapore.

出版信息

Front Med (Lausanne). 2022 Oct 13;9:875242. doi: 10.3389/fmed.2022.875242. eCollection 2022.

Abstract

BACKGROUND

Many artificial intelligence (AI) studies have focused on development of AI models, novel techniques, and reporting guidelines. However, little is understood about clinicians' perspectives of AI applications in medical fields including ophthalmology, particularly in light of recent regulatory guidelines. The aim for this study was to evaluate the perspectives of ophthalmologists regarding AI in 4 major eye conditions: diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD) and cataract.

METHODS

This was a multi-national survey of ophthalmologists between March 1st, 2020 to February 29th, 2021 disseminated the major global ophthalmology societies. The survey was designed based on microsystem, mesosystem and macrosystem questions, and the software as a medical device (SaMD) regulatory framework chaired by the Food and Drug Administration (FDA). Factors associated with AI adoption for ophthalmology analyzed with multivariable logistic regression random forest machine learning.

RESULTS

One thousand one hundred seventy-six ophthalmologists from 70 countries participated with a response rate ranging from 78.8 to 85.8% per question. Ophthalmologists were more willing to use AI as clinical assistive tools (88.1%, = 890/1,010) especially those with over 20 years' experience (OR 3.70, 95% CI: 1.10-12.5, = 0.035), as compared to clinical decision support tools (78.8%, = 796/1,010) or diagnostic tools (64.5%, = 651). A majority of Ophthalmologists felt that AI is most relevant to DR (78.2%), followed by glaucoma (70.7%), AMD (66.8%), and cataract (51.4%) detection. Many participants were confident their roles will not be replaced (68.2%, = 632/927), and felt COVID-19 catalyzed willingness to adopt AI (80.9%, = 750/927). Common barriers to implementation include medical liability from errors (72.5%, = 672/927) whereas enablers include improving access (94.5%, = 876/927). Machine learning modeling predicted acceptance from participant demographics with moderate to high accuracy, and area under the receiver operating curves of 0.63-0.83.

CONCLUSION

Ophthalmologists are receptive to adopting AI as assistive tools for DR, glaucoma, and AMD. Furthermore, ML is a useful method that can be applied to evaluate predictive factors on clinical qualitative questionnaires. This study outlines actionable insights for future research and facilitation interventions to drive adoption and operationalization of AI tools for Ophthalmology.

摘要

背景

许多人工智能(AI)研究都集中在AI模型的开发、新技术和报告指南上。然而,对于临床医生在包括眼科在内的医学领域中对AI应用的看法,人们了解甚少,尤其是鉴于最近的监管指南。本研究的目的是评估眼科医生对AI在4种主要眼部疾病中的看法:糖尿病视网膜病变(DR)、青光眼、年龄相关性黄斑变性(AMD)和白内障。

方法

这是一项在2020年3月1日至2021年2月29日期间对全球主要眼科协会的眼科医生进行的多国调查。该调查是根据微观系统、中观系统和宏观系统问题以及由美国食品药品监督管理局(FDA)主持的软件即医疗器械(SaMD)监管框架设计的。采用多变量逻辑回归随机森林机器学习分析与眼科采用AI相关的因素。

结果

来自70个国家的1176名眼科医生参与了调查,每个问题的回复率在78.8%至85.8%之间。与临床决策支持工具(78.8%,796/1010)或诊断工具(64.5%,651)相比,眼科医生更愿意将AI用作临床辅助工具(88.1%,890/1010),尤其是那些有超过20年经验的医生(OR 3.70,95%CI:1.10 - 12.5,P = 0.035)。大多数眼科医生认为AI与DR(78.2%)最相关,其次是青光眼(70.7%)、AMD(66.8%)和白内障(51.4%)检测。许多参与者相信他们的角色不会被取代(68.2%,632/927),并且认为新冠疫情促使他们更愿意采用AI(80.9%,750/927)。实施的常见障碍包括错误导致的医疗责任(72.5%,672/927),而促进因素包括改善获取途径(94.5%,876/927)。机器学习建模以中到高准确率预测了参与者人口统计学特征的接受情况,受试者操作曲线下面积为0.63 - 0.83。

结论

眼科医生愿意将AI用作DR、青光眼和AMD的辅助工具。此外,机器学习是一种可用于评估临床定性问卷预测因素的有用方法。本研究为未来研究和促进干预提供了可操作的见解,以推动眼科AI工具的采用和实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85a2/9612721/f6365ffb0ac2/fmed-09-875242-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验