Suppr超能文献

探索甘油三酯-葡萄糖指数对首次发生卒中的危重症患者的预后影响:来自传统方法和基于机器学习的死亡率预测的见解

Exploring the prognostic impact of triglyceride-glucose index in critically ill patients with first-ever stroke: insights from traditional methods and machine learning-based mortality prediction.

作者信息

Chen Yang, Yang Zhenkun, Liu Yang, Li Yuanjie, Zhong Ziyi, McDowell Garry, Ditchfield Coleen, Guo Taipu, Yang Mingjuan, Zhang Rui, Huang Bi, Gue Ying, Lip Gregory Y H

机构信息

Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.

Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.

出版信息

Cardiovasc Diabetol. 2024 Dec 18;23(1):443. doi: 10.1186/s12933-024-02538-y.

Abstract

BACKGROUND

The incidence and mortality of first-ever strokes have risen sharply, especially in the intensive care unit (ICU). Emerging surrogate for insulin resistance, triglyceride-glucose index (TyG), has been linked to stroke prognosis. We aims to explore the relationships between TyG with ICU all-cause mortality and other prognosis, and to develop machine learning (ML) models in predicting ICU all-cause mortality in the first-ever strokes.

METHODS

We included first-ever stroke patients from the eICU Collaborative Research Database in 2014-2015 as the primary analysis cohort (then divided into training and internal validation cohorts) and from local hospital's ICUs as the external validation cohort. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to evaluate the association between TyG and ICU/hospital all-cause mortality. Linear regression and correlation analyses were performed to examine the relationships between TyG with length of ICU/hospital stay and Glasgow Coma Score.

RESULTS

The primary analysis cohort included 3173 first-ever strokes (median age 68.0 [55.0-68.0] years; 63.0% male), while the external validation cohort included 201 first-ever strokes (median age 71.0 [63.0-77.0] years; 62.3% male). Multivariate Cox proportional hazards models revealed that the high TyG group (TyG ≥ 9.265) was associated with higher ICU (HR 1.92, 95% CI 1.38-2.66) and hospital (HR 1.69, 95% CI 1.32-2.16) all-cause mortality, compared with low TyG group (TyG < 9.265). TyG was also correlated with ICU length of stay (r = 0.077), hospital length of stay (r = 0.042), and Glasgow Coma Score (r = -0.132). TyG and other six features were used to construct ML models. The random forest model performed best in internal validation with AUC (0.900) and G-mean (0.443), and in external validation with AUC (0.776) and G-mean (0.399).

CONCLUSION

TyG (optimal cut-off: 9.265) was identified as an independent risk factor for ICU and hospital all-cause mortality in first-ever strokes. The ML model incorporating TyG demonstrated strong predictive performance. This emphasises the importance of insulin resistance (with TyG as a surrogate measure) in the prognostic assessment and early risk stratification of first-time stroke patients.

摘要

背景

首次卒中的发病率和死亡率急剧上升,尤其是在重症监护病房(ICU)。新兴的胰岛素抵抗替代指标——甘油三酯-葡萄糖指数(TyG),已与卒中预后相关联。我们旨在探讨TyG与ICU全因死亡率及其他预后之间的关系,并开发机器学习(ML)模型来预测首次卒中患者的ICU全因死亡率。

方法

我们纳入了2014 - 2015年eICU协作研究数据库中的首次卒中患者作为主要分析队列(随后分为训练队列和内部验证队列),并纳入当地医院ICU的患者作为外部验证队列。采用多变量Cox比例风险模型和受限立方样条分析来评估TyG与ICU/医院全因死亡率之间的关联。进行线性回归和相关性分析,以检验TyG与ICU/医院住院时间及格拉斯哥昏迷评分之间的关系。

结果

主要分析队列包括3173例首次卒中患者(中位年龄68.0[55.0 - 68.0]岁;63.0%为男性),而外部验证队列包括201例首次卒中患者(中位年龄71.0[63.0 - 77.0]岁;62.3%为男性)。多变量Cox比例风险模型显示,与低TyG组(TyG < 9.265)相比,高TyG组(TyG≥9.265)与更高的ICU(风险比[HR]1.92,95%置信区间[CI]1.38 - 2.66)和医院(HR 1.69,95% CI 1.32 - 2.16)全因死亡率相关。TyG还与ICU住院时间(r = 0.077)、医院住院时间(r = 0.042)和格拉斯哥昏迷评分(r = -0.132)相关。使用TyG和其他六个特征构建ML模型。随机森林模型在内部验证中表现最佳,AUC为0.900,G均值为0.443,在外部验证中AUC为0.776,G均值为0.399。

结论

TyG(最佳截断值:9.265)被确定为首次卒中患者ICU和医院全因死亡率的独立危险因素。纳入TyG的ML模型表现出强大的预测性能。这强调了胰岛素抵抗(以TyG作为替代指标)在首次卒中患者预后评估和早期风险分层中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e04e/11658255/06d6da2b5ba3/12933_2024_2538_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验