College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, China.
Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
Int J Mol Sci. 2024 Nov 6;25(22):11932. doi: 10.3390/ijms252211932.
Sugar beet ( L.) is a significant global crop for sugar production, with nitrogen playing a crucial role in its growth, development, and sugar yield. Autophagy facilitates nutrient reabsorption and recycling under nutrient stress by degrading intracellular components, thereby enhancing plant nitrogen use efficiency. However, research on the autophagy response to low-nitrogen stress in sugar beet remains limited. In this study, 29 members of the gene family were identified, with genes within the same subfamily displaying similar gene structures and conserved domains. These genes in sugar beet contain various hormone and stress-response elements. Transcriptome data and qRT-PCR analysis further revealed that the expression levels of , , , , , , and were significantly upregulated under low-nitrogen stress, with most genes showing high expression levels across different tissues. These genes are thus likely involved in regulating autophagy in response to low-nitrogen conditions. The observed increase in autophagosome numbers further supports the induction of autophagy by low-nitrogen stress. These nine genes can be considered key candidates for further research on nitrogen-sensitive autophagy in the sugar beet gene family. This study provides a comprehensive analysis of the structure and biological functions of genes in sugar beet, offering genetic resources for future efforts to improve sugar beet varieties through genetic engineering. Such efforts could focus on regulating autophagy to enhance nitrogen use efficiency and develop new germplasm.
甜菜(Beta vulgaris L.)是一种重要的全球制糖作物,氮素在其生长、发育和产糖中起着至关重要的作用。自噬通过降解细胞内成分促进养分的再吸收和循环利用,从而提高植物的氮素利用效率。然而,关于甜菜对低氮胁迫的自噬反应的研究仍然有限。本研究鉴定了甜菜 29 个 基因家族成员,同一家族内的基因具有相似的基因结构和保守结构域。这些甜菜基因含有各种激素和应激响应元件。转录组数据和 qRT-PCR 分析进一步表明,在低氮胁迫下, 、 、 、 、 、 和 的表达水平显著上调,大多数基因在不同组织中表达水平较高。因此,这些基因可能参与调节低氮条件下的自噬。观察到自噬体数量的增加进一步支持了低氮胁迫诱导自噬的作用。这九个基因可以被认为是甜菜 基因家族中氮敏感自噬的关键候选基因。本研究对甜菜 基因家族的结构和生物学功能进行了全面分析,为未来通过基因工程改良甜菜品种提供了遗传资源。这些努力可以集中在调节自噬以提高氮素利用效率和开发新的种质资源上。