Suppr超能文献

碳酸酐酶 IX 与单羧酸转运蛋白 4 的物理相互作用被破坏会影响乳腺癌细胞中的乳酸转运。

Disruption of the Physical Interaction Between Carbonic Anhydrase IX and the Monocarboxylate Transporter 4 Impacts Lactate Transport in Breast Cancer Cells.

机构信息

Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.

Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.

出版信息

Int J Mol Sci. 2024 Nov 8;25(22):11994. doi: 10.3390/ijms252211994.

Abstract

It has been previously established that breast cancer cells exhibit high expression of the monocarboxylate (lactate) transporters (MCT1 and/or MCT4) and carbonic anhydrase IX (CAIX) and form a functional metabolon for proton-coupled lactate export, thereby stabilizing intracellular pH. CD147 is the MCT accessory protein that facilitates the creation of the MCT/CAIX complex. This study describes how the small molecule Beta-Galactose 2C (BGal2C) blocks the physical and functional interaction between CAIX and either MCT1 or MCT4 in Xenopus oocytes, which reduces the rate of proton and lactate flux with an IC of ~90 nM. This value is similar to the K for inhibition of CAIX activity. Furthermore, it is shown that BGal2C blocks hypoxia-induced lactate transport in MDA-MB-231 and MCF-7 breast cancer cells, both of which express CAIX. As in oocytes, BGal2C interferes with the physical interaction between CAIX and MCTs in both cell types. Finally, X-ray crystallographic studies highlight unique interactions between BGal2C and a CAIX-mimic that are not observed within the CAII active site and which may underlie the strong specificity of BGal2C for CAIX. These studies demonstrate the utility of a novel sulfonamide in interfering with elevated proton and lactate flux, a hallmark of many solid tumors.

摘要

先前已证实,乳腺癌细胞表现出高表达单羧酸(乳酸)转运蛋白(MCT1 和/或 MCT4)和碳酸酐酶 IX(CAIX),并形成质子偶联乳酸外排的功能性代谢物,从而稳定细胞内 pH 值。CD147 是 MCT 辅助蛋白,有助于形成 MCT/CAIX 复合物。本研究描述了小分子 Beta-Galactose 2C(BGal2C)如何在非洲爪蟾卵母细胞中阻断 CAIX 与 MCT1 或 MCT4 之间的物理和功能相互作用,从而降低质子和乳酸通量的速率,IC 值约为 90 nM。该值与抑制 CAIX 活性的 K 值相似。此外,研究表明 BGal2C 可阻断 MDA-MB-231 和 MCF-7 乳腺癌细胞中缺氧诱导的乳酸转运,这两种细胞均表达 CAIX。与卵母细胞一样,BGal2C 干扰了两种细胞类型中 CAIX 和 MCTs 之间的物理相互作用。最后,X 射线晶体学研究强调了 BGal2C 与 CAIX 模拟物之间的独特相互作用,这些相互作用在 CAII 活性位点内未观察到,可能是 BGal2C 对 CAIX 具有强特异性的基础。这些研究证明了一种新型磺胺在干扰升高的质子和乳酸通量方面的效用,这是许多实体瘤的一个标志。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f79/11593560/5fd677583cba/ijms-25-11994-g001.jpg

相似文献

2
CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells.
Oncogene. 2020 Feb;39(8):1710-1723. doi: 10.1038/s41388-019-1098-6. Epub 2019 Nov 13.
6
Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II.
J Membr Biol. 2010 Apr;234(2):125-35. doi: 10.1007/s00232-010-9240-y. Epub 2010 Mar 19.
7
Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters.
J Biol Chem. 2014 Jan 31;289(5):2765-75. doi: 10.1074/jbc.M113.537043. Epub 2013 Dec 12.
9
Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II.
J Biol Chem. 2015 Feb 13;290(7):4476-86. doi: 10.1074/jbc.M114.624577. Epub 2015 Jan 5.

引用本文的文献

1
Developments in the study of the role of lactate metabolism in the genesis and progression of thyroid cancer.
Front Cell Dev Biol. 2025 Aug 22;13:1640454. doi: 10.3389/fcell.2025.1640454. eCollection 2025.
2
Tumor Hypoxia: How Conventional Histology Is Reshaped in Breast Carcinoma.
Int J Mol Sci. 2025 May 6;26(9):4423. doi: 10.3390/ijms26094423.

本文引用的文献

1
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4.
2
Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives.
J Enzyme Inhib Med Chem. 2021 Dec;36(1):685-692. doi: 10.1080/14756366.2021.1887171.
3
Inhibition of Carbonic Anhydrase Using SLC-149: Support for a Noncatalytic Function of CAIX in Breast Cancer.
J Med Chem. 2021 Feb 11;64(3):1713-1724. doi: 10.1021/acs.jmedchem.0c02077. Epub 2021 Feb 1.
4
Carbonic anhydrase IX and acid transport in cancer.
Br J Cancer. 2020 Jan;122(2):157-167. doi: 10.1038/s41416-019-0642-z. Epub 2019 Dec 10.
5
Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches.
Front Oncol. 2019 Nov 1;9:1143. doi: 10.3389/fonc.2019.01143. eCollection 2019.
6
The Acidic Tumor Microenvironment as a Driver of Cancer.
Annu Rev Physiol. 2020 Feb 10;82:103-126. doi: 10.1146/annurev-physiol-021119-034627. Epub 2019 Nov 15.
7
CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells.
Oncogene. 2020 Feb;39(8):1710-1723. doi: 10.1038/s41388-019-1098-6. Epub 2019 Nov 13.
8
The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond.
Cancer Metastasis Rev. 2019 Jun;38(1-2):65-77. doi: 10.1007/s10555-019-09799-0.
9
Synthesis of saccharin-glycoconjugates targeting carbonic anhydrase using a one-pot cyclization/deprotection strategy.
Carbohydr Res. 2019 Apr 1;476:65-70. doi: 10.1016/j.carres.2019.03.001. Epub 2019 Mar 19.
10
What is pH regulation, and why do cancer cells need it?
Cancer Metastasis Rev. 2019 Jun;38(1-2):5-15. doi: 10.1007/s10555-018-09778-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验