Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia.
Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia.
Int J Mol Sci. 2024 Nov 15;25(22):12293. doi: 10.3390/ijms252212293.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and memory loss. While the precise causes of AD remain unclear, emerging evidence suggests that messenger RNA (mRNA) dysregulation contributes to AD pathology and risk. This study examined exosomal mRNA expression profiles of 15 individuals diagnosed with AD and 15 healthy controls from Barranquilla, Colombia. Utilizing advanced bioinformatics and machine learning (ML) techniques, we identified differentially expressed mRNAs and assessed their predictive power for AD diagnosis and AD age of onset (ADAOO). Our results showed that ENST00000331581 () and ENST00000382258 () were significantly upregulated in AD patients. Key predictors for AD diagnosis included ENST00000311550 (), ENST00000278765 (), ENST00000331581 (), ENST00000372572 (), and ENST00000636358 (), achieving > 90% accuracy in both training and testing datasets. For ADAOO, ENST00000340552 () expression correlated with a delay of ~12.6 years, while ENST00000304677 (), ENST00000640218 (), ENST00000602017 (), ENST00000224950 (), and ENST00000322088 () emerged as the most important predictors. ENST00000304677 () and ENST00000602017 () showed promising predictive accuracy in unseen data. These findings suggest that mRNA expression profiles may serve as effective biomarkers for AD diagnosis and ADAOO, providing a cost-efficient and minimally invasive tool for early detection and monitoring. Further research is needed to validate these results in larger, diverse cohorts and explore the biological roles of the identified mRNAs in AD pathogenesis.
阿尔茨海默病(AD)是一种神经退行性疾病,其特征是进行性认知能力下降和记忆力丧失。虽然 AD 的确切原因尚不清楚,但新出现的证据表明信使 RNA(mRNA)失调导致 AD 病理和风险。本研究检查了来自哥伦比亚巴兰基亚的 15 名 AD 患者和 15 名健康对照者的外泌体 mRNA 表达谱。我们利用先进的生物信息学和机器学习(ML)技术,鉴定了差异表达的 mRNAs,并评估了它们对 AD 诊断和 AD 发病年龄(ADAOO)的预测能力。我们的研究结果表明,ENST00000331581()和 ENST00000382258()在 AD 患者中显著上调。AD 诊断的关键预测因子包括 ENST00000311550()、ENST00000278765()、ENST00000331581()、ENST00000372572()和 ENST00000636358(),在训练和测试数据集中均实现了>90%的准确率。对于 ADAOO,ENST00000340552()的表达与延迟约 12.6 年相关,而 ENST00000304677()、ENST00000640218()、ENST00000602017()、ENST00000224950()和 ENST00000322088()则成为最重要的预测因子。ENST00000304677()和 ENST00000602017()在未见数据中显示出有前景的预测准确性。这些发现表明,mRNA 表达谱可能成为 AD 诊断和 ADAOO 的有效生物标志物,为早期发现和监测提供了一种经济高效且微创的工具。需要在更大、更多样化的队列中进一步验证这些结果,并探索鉴定的 mRNAs 在 AD 发病机制中的生物学作用。