Suppr超能文献

基于转录组学的机器学习模型鉴别轻度认知障碍及向阿尔茨海默病转化的预测。

A Transcriptomics-Based Machine Learning Model Discriminating Mild Cognitive Impairment and the Prediction of Conversion to Alzheimer's Disease.

机构信息

Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.

Hugenebio Institute, Bio-Innovation Park, Erom, Inc., Chuncheon 24427, Republic of Korea.

出版信息

Cells. 2024 Nov 19;13(22):1920. doi: 10.3390/cells13221920.

Abstract

The clinical spectrum of Alzheimer's disease (AD) ranges dynamically from asymptomatic and mild cognitive impairment (MCI) to mild, moderate, or severe AD. Although a few disease-modifying treatments, such as lecanemab and donanemab, have been developed, current therapies can only delay disease progression rather than halt it entirely. Therefore, the early detection of MCI and the identification of MCI patients at high risk of progression to AD remain urgent unmet needs in the super-aged era. This study utilized transcriptomics data from cognitively unimpaired (CU) individuals, MCI, and AD patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort and leveraged machine learning models to identify biomarkers that differentiate MCI from CU and also distinguish AD from MCI individuals. Furthermore, Cox proportional hazards analysis was conducted to identify biomarkers predictive of the progression from MCI to AD. Our machine learning models identified a unique set of gene expression profiles capable of achieving an area under the curve (AUC) of 0.98 in distinguishing those with MCI from CU individuals. A subset of these biomarkers was also found to be significantly associated with the risk of progression from MCI to AD. A linear mixed model demonstrated that plasma tau phosphorylated at threonine 181 (pTau181) and neurofilament light chain (NFL) exhibit the prognostic value in predicting cognitive decline longitudinally. These findings underscore the potential of integrating machine learning (ML) with transcriptomic profiling in the early detection and prognostication of AD. This integrated approach could facilitate the development of novel diagnostic tools and therapeutic strategies aimed at delaying or preventing the onset of AD in at-risk individuals. Future studies should focus on validating these biomarkers in larger, independent cohorts and further investigating their roles in AD pathogenesis.

摘要

阿尔茨海默病(AD)的临床谱从无症状和轻度认知障碍(MCI)到轻度、中度或重度 AD 动态变化。虽然已经开发了一些疾病修饰治疗方法,如 lecanemab 和 donanemab,但目前的治疗方法只能延缓疾病进展,而不能完全阻止它。因此,在超老龄化时代,早期发现 MCI 并确定 MCI 患者向 AD 进展的高风险仍然是未满足的迫切需求。本研究利用来自认知正常(CU)个体、MCI 和 AD 患者的转录组学数据,以及阿尔茨海默病神经影像学倡议(ADNI)队列中的机器学习模型,来识别区分 MCI 与 CU 的生物标志物,以及区分 AD 与 MCI 患者的生物标志物。此外,还进行了 Cox 比例风险分析,以确定预测从 MCI 进展为 AD 的生物标志物。我们的机器学习模型确定了一组独特的基因表达谱,能够在区分 MCI 和 CU 个体方面达到 0.98 的曲线下面积(AUC)。其中一部分生物标志物也被发现与从 MCI 进展为 AD 的风险显著相关。线性混合模型表明,在预测认知衰退的纵向进展方面,磷酸化苏氨酸 181 位的 tau (pTau181)和神经丝轻链(NFL)的血浆含量具有预后价值。这些发现强调了将机器学习(ML)与转录组谱分析相结合在 AD 的早期检测和预后中的潜力。这种综合方法可以促进新型诊断工具和治疗策略的开发,旨在延缓或预防高危人群中 AD 的发生。未来的研究应集中在更大的独立队列中验证这些生物标志物,并进一步研究它们在 AD 发病机制中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee9/11593234/2f4b5c794c6a/cells-13-01920-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验