Suppr超能文献

可解释的机器学习驱动的阿尔茨海默病生物标志物识别与验证

Interpretable machine learning-driven biomarker identification and validation for Alzheimer's disease.

作者信息

Wang Fang, Liang Ying, Wang Qin-Wen

机构信息

Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China.

Ningbo Maritime Silk Road Institute, No.8, South Qianhu Road, Ningbo, China.

出版信息

Sci Rep. 2024 Dec 28;14(1):30770. doi: 10.1038/s41598-024-80401-6.

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by limited effective treatments, underscoring the critical need for early detection and diagnosis to improve intervention outcomes. This study integrates various bioinformatics methodologies with interpretable machine learning to identify reliable biomarkers for AD diagnosis and treatment. By leveraging differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis (WGCNA), and construction of Protein-Protein Interaction (PPI) Networks, we meticulously analyzed the AD dataset from the GEO database to pinpoint Hub genes. Subsequently, various machine learning algorithms were employed to construct diagnostic models, which were then elucidated using SHapley Additive exPlanations (SHAP). To visualize our findings, we generated an insightful bioinformatics map of 10 Hub genes. We then conducted experimental validation on less-studied Hub genes, revealing significant differential mRNA expression of MYH9 and RHOQ in an AD cell model. Finally, we explored the biological significance of these two genes at the single-cell transcriptome level. This study not only introduces interactive SHAP panels for precise decision-making in AD but also offers novel insights into the identification of AD biomarkers through interpretable machine learning diagnostic models. Particularly, MYH9 has emerged as a promising new potential biomarker, pointing the way towards enhanced diagnostic accuracy and personalized therapeutic strategies for AD. Although the mRNA expression patterns of RHOQ are opposite in AD cell models and human brain tissue samples, the role of RHOQ in AD remains worthy of further exploration due to the diversity and complexity of biological molecular regulation.

摘要

阿尔茨海默病(AD)是一种神经退行性疾病,其有效治疗方法有限,这凸显了早期检测和诊断对于改善干预效果的迫切需求。本研究将各种生物信息学方法与可解释的机器学习相结合,以确定用于AD诊断和治疗的可靠生物标志物。通过利用差异表达基因(DEG)分析、加权基因共表达网络分析(WGCNA)和蛋白质-蛋白质相互作用(PPI)网络的构建,我们仔细分析了来自GEO数据库的AD数据集以确定中心基因。随后,采用各种机器学习算法构建诊断模型,然后使用夏普利加性解释(SHAP)对其进行阐释。为了可视化我们的研究结果,我们生成了一张包含10个中心基因的有洞察力的生物信息学图谱。然后,我们对研究较少的中心基因进行了实验验证,发现在AD细胞模型中MYH9和RHOQ的mRNA表达存在显著差异。最后,我们在单细胞转录组水平上探索了这两个基因的生物学意义。本研究不仅引入了交互式SHAP面板用于AD的精确决策,还通过可解释的机器学习诊断模型为AD生物标志物的识别提供了新的见解。特别是,MYH9已成为一种有前途的新潜在生物标志物,为提高AD的诊断准确性和个性化治疗策略指明了方向。尽管RHOQ在AD细胞模型和人脑组织样本中的mRNA表达模式相反,但由于生物分子调控的多样性和复杂性,RHOQ在AD中的作用仍值得进一步探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96c7/11680850/2c92dd0a6994/41598_2024_80401_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验