Suppr超能文献

基于双目视觉的农产品运输车辆物料堆高测量方法研究

Research on a Method for Measuring the Pile Height of Materials in Agricultural Product Transport Vehicles Based on Binocular Vision.

作者信息

Qian Wang, Wang Pengyong, Wang Hongjie, Wu Shuqin, Hao Yang, Zhang Xiaoou, Wang Xinyu, Sun Wenyan, Guo Haijie, Guo Xin

机构信息

College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China.

Inner Mongolia Engineering Research Center of Intelligent Equipment for the Entire Process of Forage and Feed Production, Hohhot 010020, China.

出版信息

Sensors (Basel). 2024 Nov 11;24(22):7204. doi: 10.3390/s24227204.

Abstract

The advancement of unloading technology in combine harvesting is crucial for the intelligent development of agricultural machinery. Accurately measuring material pile height in transport vehicles is essential, as uneven accumulation can lead to spillage and voids, reducing loading efficiency. Relying solely on manual observation for measuring stack height can decrease harvesting efficiency and pose safety risks due to driver distraction. This research applies binocular vision to agricultural harvesting, proposing a novel method that uses a stereo matching algorithm to measure material pile height during harvesting. By comparing distance measurements taken in both empty and loaded states, the method determines stack height. A linear regression model processes the stack height data, enhancing measurement accuracy. A binocular vision system was established, applying Zhang's calibration method on the MATLAB (R2019a) platform to correct camera parameters, achieving a calibration error of 0.15 pixels. The study implemented block matching (BM) and semi-global block matching (SGBM) algorithms using the OpenCV (4.8.1) library on the PyCharm (2020.3.5) platform for stereo matching, generating disparity, and pseudo-color maps. Three-dimensional coordinates of key points on the piled material were calculated to measure distances from the vehicle container bottom and material surface to the binocular camera, allowing for the calculation of material pile height. Furthermore, a linear regression model was applied to correct the data, enhancing the accuracy of the measured pile height. The results indicate that by employing binocular stereo vision and stereo matching algorithms, followed by linear regression, this method can accurately calculate material pile height. The average relative error for the BM algorithm was 3.70%, and for the SGBM algorithm, it was 3.35%, both within the acceptable precision range. While the SGBM algorithm was, on average, 46 ms slower than the BM algorithm, both maintained errors under 7% and computation times under 100 ms, meeting the real-time measurement requirements for combine harvesting. In practical operations, this method can effectively measure material pile height in transport vehicles. The choice of matching algorithm should consider container size, material properties, and the balance between measurement time, accuracy, and disparity map completeness. This approach aids in manual adjustment of machinery posture and provides data support for future autonomous master-slave collaborative operations in combine harvesting.

摘要

联合收获中卸载技术的进步对农业机械的智能化发展至关重要。准确测量运输车辆中的物料堆高度至关重要,因为堆积不均匀会导致溢出和空隙,降低装载效率。仅依靠人工观察来测量堆高会降低收获效率,并且由于驾驶员分心会带来安全风险。本研究将双目视觉应用于农业收获,提出了一种新颖的方法,该方法使用立体匹配算法在收获期间测量物料堆高度。通过比较空载和满载状态下的距离测量值,该方法确定堆高。线性回归模型对堆高数据进行处理,提高测量精度。建立了双目视觉系统,在MATLAB(R2019a)平台上应用张正友标定法校正相机参数,标定误差为0.15像素。该研究在PyCharm(2020.3.5)平台上使用OpenCV(4.8.1)库实现了块匹配(BM)和半全局块匹配(SGBM)算法进行立体匹配,生成视差图和伪彩色图。计算堆积物料上关键点的三维坐标,以测量从车辆货箱底部和物料表面到双目相机的距离,从而计算物料堆高度。此外,应用线性回归模型对数据进行校正,提高了测量堆高的准确性。结果表明,通过采用双目立体视觉和立体匹配算法,再进行线性回归,该方法能够准确计算物料堆高度。BM算法的平均相对误差为3.70%,SGBM算法的平均相对误差为3.35%,均在可接受的精度范围内。虽然SGBM算法平均比BM算法慢46毫秒,但两者的误差均保持在7%以下,计算时间均在100毫秒以下,满足联合收获的实时测量要求。在实际操作中,该方法能够有效测量运输车辆中的物料堆高度。匹配算法的选择应考虑货箱尺寸、物料特性以及测量时间、精度和视差图完整性之间的平衡。这种方法有助于人工调整机械姿态,并为联合收获中未来的自主主从协同作业提供数据支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c63/11597934/f4a0c91d954c/sensors-24-07204-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验