Suppr超能文献

基于车载双目立体视觉技术的滨海潮滩地区ART道路路基沉降检测方法

Detection method of subgrade settlement for the road of ART in coastal tidal flat area based on Vehicle-mounted binocular stereo vision technology.

作者信息

Wu Qingdong, Miao Jijun, Liu Zhaohui, Li Fuhao, Liu Yihao

机构信息

School of Civil Engineering, Qingdao University of Technology, Qingdao, 266520, China.

Shandong Luqiao Group Company, Ltd, Jinan, 250014, China.

出版信息

Sci Rep. 2025 Mar 8;15(1):8077. doi: 10.1038/s41598-025-91343-y.

Abstract

To address the problem present in current subgrade settlement detection methods, this paper proposes a nondestructive intelligent and dynamic detection method for subgrade settlement based on vehicle-mounted binocular stereo vision technology. This method aims to achieve all season, the whole road, long-term detection of subgrade settlement for Road of ART (Autonomous rail Rapid Transit) in coastal tidal flat areas. Firstly, improved Schneider encoding is adopted as the marker for subgrade settlement monitoring points. Binocular camera calibration and stereo rectification are performed using Zhang's method and the Bouguet algorithm before acquiring the marker images at the monitoring points, followed by efficient capture of Schneider ring coding images by the vehicle-mounted binocular stereo vision system. Thirdly, OpenCV is employed to preprocess the images, which improve image quality, eliminate noise, and enhance the features of the ring coding markers. On this basis, an improved SGBM algorithm is utilized for binocular stereo matching. Finally, according to the principle of triangulation, the three-dimensional coordinates of the monitoring points are obtained, and the corresponding settlement values of each monitoring point are determined through decoding and matching. Experimental results indicate that, for a true settlement value of 60 mm, the proposed detection method achieves an average settlement value of 58.897 mm, with a relative error rate of 1.84%. In the same experimental environment, the relative error rate of using a monocular camera detection method is 10.3%. The vehicle-mounted binocular camera method, with lower relative error than the monocular camera, offers a more efficient and accurate solution for nondestructive subgrade settlement detection, enhancing its intelligence.

摘要

为解决当前路基沉降检测方法中存在的问题,本文提出了一种基于车载双目立体视觉技术的路基沉降无损智能动态检测方法。该方法旨在实现对沿海潮滩地区ART(自动导轨快速运输)道路路基沉降的全季节、全路段、长期检测。首先,采用改进的施奈德编码作为路基沉降监测点的标记。在获取监测点的标记图像之前,使用张氏方法和布盖算法进行双目相机标定和立体校正,然后由车载双目立体视觉系统高效采集施奈德环形编码图像。第三步,利用OpenCV对图像进行预处理,提高图像质量、消除噪声并增强环形编码标记的特征。在此基础上,采用改进的SGBM算法进行双目立体匹配。最后,根据三角测量原理,获取监测点的三维坐标,并通过解码和匹配确定各监测点的相应沉降值。实验结果表明,对于真实沉降值为60mm的情况,所提出的检测方法获得的平均沉降值为58.897mm,相对误差率为1.84%。在相同实验环境下,使用单目相机检测方法的相对误差率为10.3%。车载双目相机方法的相对误差低于单目相机,为路基沉降无损检测提供了一种更高效、准确的解决方案,提高了其智能化程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/785f/11890732/dcb35d32c791/41598_2025_91343_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验