Suppr超能文献

一种利用心率变异性和生命体征估计镇静水平的深度学习模型:韩国某中心的一项回顾性横断面研究。

A deep learning model for estimating sedation levels using heart rate variability and vital signs: a retrospective cross-sectional study at a center in South Korea.

作者信息

Kim You Sun, Lee Bongjin, Jang Wonjin, Jeon Yonghyuk, Park June Dong

机构信息

Department of Pediatrics, Seoul National University Hospital, Seoul, Korea.

Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Korea.

出版信息

Acute Crit Care. 2024 Nov;39(4):621-629. doi: 10.4266/acc.2024.01200. Epub 2024 Nov 25.

Abstract

BACKGROUND

Optimal sedation assessment in critically ill children remains challenging due to the subjective nature of behavioral scales and intermittent evaluation schedules. This study aimed to develop a deep learning model based on heart rate variability (HRV) parameters and vital signs to predict effective and safe sedation levels in pediatric patients.

METHODS

This retrospective cross-sectional study was conducted in a pediatric intensive care unit at a tertiary children's hospital. We developed deep learning models incorporating HRV parameters extracted from electrocardiogram waveforms and vital signs to predict Richmond Agitation-Sedation Scale (RASS) scores. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). The data were split into training, validation, and test sets (6:2:2), and the models were developed using a 1D ResNet architecture.

RESULTS

Analysis of 4,193 feature sets from 324 patients achieved excellent discrimination ability, with AUROC values of 0.867, 0.868, 0.858, 0.851, and 0.811 for whole number RASS thresholds of -5 to -1, respectively. AUPRC values ranged from 0.928 to 0.623, showing superior performance in deeper sedation levels. The HRV metric SDANN2 showed the highest feature importance, followed by systolic blood pressure and heart rate.

CONCLUSIONS

A combination of HRV parameters and vital signs can effectively predict sedation levels in pediatric patients, offering the potential for automated and continuous sedation monitoring in pediatric intensive care settings. Future multi-center validation studies are needed to establish broader applicability.

摘要

背景

由于行为量表的主观性和间歇性评估时间表,对危重症儿童进行最佳镇静评估仍然具有挑战性。本研究旨在开发一种基于心率变异性(HRV)参数和生命体征的深度学习模型,以预测儿科患者有效且安全的镇静水平。

方法

这项回顾性横断面研究在一家三级儿童医院的儿科重症监护病房进行。我们开发了深度学习模型,纳入从心电图波形和生命体征中提取的HRV参数,以预测里士满躁动镇静量表(RASS)评分。使用受试者操作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC)评估模型性能。数据被分为训练集、验证集和测试集(6:2:2),并使用一维残差网络(1D ResNet)架构开发模型。

结果

对324例患者的4193个特征集进行分析,获得了出色的区分能力,对于-5至-1的整数RASS阈值,AUROC值分别为0.867、0.868、0.858、0.851和0.811。AUPRC值范围为0.928至0.623,在较深镇静水平下表现出卓越性能。HRV指标SDANN2显示出最高的特征重要性,其次是收缩压和心率。

结论

HRV参数和生命体征的组合可以有效预测儿科患者的镇静水平,为儿科重症监护环境中的自动化和持续镇静监测提供了潜力。未来需要进行多中心验证研究以确立更广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8976/11617840/dbccc511e6a0/acc-2024-01200f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验