Suppr超能文献

金属有机框架中某些金属节点的一组精细通用力场参数

A Refined Set of Universal Force Field Parameters for Some Metal Nodes in Metal-Organic Frameworks.

作者信息

Li Yutao, Jin Xin, Moubarak Elias, Smit Berend

机构信息

Laboratory of molecular simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland.

出版信息

J Chem Theory Comput. 2024 Dec 10;20(23):10540-10552. doi: 10.1021/acs.jctc.4c01113. Epub 2024 Nov 27.

Abstract

Metal-organic frameworks (MOFs) exhibit promise as porous materials for carbon capture due to their design versatility and large pore sizes. The generic force fields (e.g., UFF and Dreiding) use one universal set of Lennard-Jones parameters for each element, while MOFs have a much richer local chemical environment than those chemical environments used to fit the UFF. When MOFs contain hard-Lewis acid metals, UFF systematically overestimates CO uptakes. To address this, we developed a workflow to affordably and efficiently generate reliable force fields to predict CO adsorption isotherms of MOFs containing metals from groups IIA (Mg, Ca, Sr, and Ba) and IIIA (Al, Ga, and In), connected to various carboxylate ligands. This method uses experimental isotherms as input. The optimal parameters are obtained by minimizing the loss function of the experimental and simulated isotherms, in which we use the Multistate Bennett Acceptance Ratio (MBAR) theory to derive the functionality relationship of loss functions in terms of force field parameters.

摘要

金属有机框架材料(MOFs)因其设计的多样性和较大的孔径,有望成为用于碳捕获的多孔材料。通用力场(例如UFF和Dreiding)对每个元素使用一组通用的 Lennard-Jones 参数,而MOFs的局部化学环境比用于拟合UFF的化学环境丰富得多。当MOFs包含硬路易斯酸金属时,UFF会系统性地高估CO的吸收量。为了解决这个问题,我们开发了一种工作流程,以经济高效的方式生成可靠的力场,来预测含有第IIA族(Mg、Ca、Sr和Ba)和第IIIA族(Al、Ga和In)金属且连接各种羧酸配体的MOFs的CO吸附等温线。该方法使用实验等温线作为输入。通过最小化实验等温线和模拟等温线的损失函数来获得最佳参数,其中我们使用多态贝内特接受率(MBAR)理论来推导损失函数关于力场参数的函数关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a09b/11635978/aad2908e8a5d/ct4c01113_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验