European School of Molecular Medicine, University of Milan, Milan, Italy.
CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
Curr Protoc. 2024 Nov;4(11):e70056. doi: 10.1002/cpz1.70056.
Keratinocytes are the most abundant cell type in the human epidermis, the outermost layer of the skin. For years, primary human keratinocytes (HKs) have been used as a crucial tool for studying the pathogenesis of a wide range of skin-related diseases. To mimic the physiological and pathological behavior of human skin, organotypic 3D skin models can be generated by in vitro differentiation of HKs. However, manipulation of HKs is notoriously difficult. Liposome-mediated gene delivery often results in low transfection rates, and conventional electroporation results in high mortality, is difficult to optimize, and requires high cell numbers without necessarily achieving maximum efficiency. Additionally, HKs have a short lifespan in vitro, with a limited number of cell divisions before senescence, even when cultured on a feeder layer. Therefore, the possibility to use an efficient CRISPR/Cas9 system in HKs is not without challenge in terms of transfection technology and clonal selection. In this article, we provide detailed protocols to perform efficient gene knock-out (KO) or genomic deletion in a small number of HKs without clonal selection of edited cells. By nucleofecting ribonucleoprotein complexes, we efficiently generate KO cells as well as deletion of specific genomic regions. Moreover, we describe an optimized protocol for generating site-specific mutations in immortalized keratinocytes (N/TERT2G) by exploiting the homology-directed repair system combined with rapid single-clone screening. These methods can also be applied to other immortalized cells and tumoral cells of epithelial origin. Together, these protocols provide a comprehensive and powerful tool that can be used to better understand the molecular mechanisms underlying different skin diseases. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Knock-out generation by indel mutation in primary human keratinocytes using nucleofection of ribonucleoprotein (RNP) complex Basic Protocol 2: Deletion of specific genomic region using RNPs via nucleofection Basic Protocol 3: Use of homology-directed repair system to introduce site-specific mutations.
角质形成细胞是人类表皮(皮肤的最外层)中最丰富的细胞类型。多年来,原代人角质形成细胞(HKs)一直被用作研究广泛的皮肤相关疾病发病机制的重要工具。为了模拟人类皮肤的生理和病理行为,可以通过 HKs 的体外分化来生成器官型 3D 皮肤模型。然而,HKs 的操作非常困难。脂质体介导的基因转染通常导致转染效率低,而传统的电穿孔则导致高死亡率、难以优化,并且需要高细胞数量,而不一定能达到最大效率。此外,HKs 在体外的寿命很短,即使在饲养层上培养,在衰老之前也只有有限的细胞分裂次数。因此,在 HKs 中使用高效的 CRISPR/Cas9 系统在转染技术和克隆选择方面并非没有挑战。在本文中,我们提供了详细的方案,可在无需编辑细胞的克隆选择的情况下,在少量 HKs 中进行有效的基因敲除(KO)或基因组缺失。通过核转染核糖核蛋白复合物,我们可以有效地生成 KO 细胞以及特定基因组区域的缺失。此外,我们描述了一种通过利用同源定向修复系统结合快速单克隆筛选来在永生化角质形成细胞(N/TERT2G)中产生特定点突变的优化方案。这些方法也可以应用于其他永生化细胞和上皮来源的肿瘤细胞。总之,这些方案提供了一种全面而强大的工具,可以用于更好地理解不同皮肤疾病的分子机制。© 2024 作者。 Wiley Periodicals LLC 出版的《当代协议》。 基本方案 1:通过核转染核糖核蛋白复合物在原代人角质形成细胞中产生 INDEL 突变的 KO 方案 基本方案 2:使用 RNPs 通过核转染删除特定的基因组区域 基本方案 3:利用同源定向修复系统引入特定点突变。