Suppr超能文献

C5α-甲基取代的碳青霉烯类NA-1-157使催化赖氨酸残基脱羧,从而强效抑制OXA-58碳青霉烯酶。

Decarboxylation of the Catalytic Lysine Residue by the C5α-Methyl-Substituted Carbapenem NA-1-157 Leads to Potent Inhibition of the OXA-58 Carbapenemase.

作者信息

Toth Marta, Stewart Nichole K, Maggiolo Ailiena O, Quan Pojun, Khan Md Mahbub Kabir, Buynak John D, Smith Clyde A, Vakulenko Sergei B

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, United States.

出版信息

ACS Infect Dis. 2024 Dec 13;10(12):4347-4359. doi: 10.1021/acsinfecdis.4c00671. Epub 2024 Nov 27.

Abstract

Antibiotic resistance in bacteria is a major global health concern. The wide spread of carbapenemases, bacterial enzymes that degrade the last-resort carbapenem antibiotics, is responsible for multidrug resistance in bacterial pathogens and has further significantly exacerbated this problem. is one of the leading nosocomial pathogens due to the acquisition and wide dissemination of carbapenem-hydrolyzing class D β-lactamases, which have dramatically diminished available therapeutic options. Thus, new antibiotics that are active against multidrug-resistant and carbapenemase inhibitors are urgently needed. Here we report characterization of the interaction of the C5α-methyl-substituted carbapenem NA-1-157 with one of the clinically important class D carbapenemases, OXA-58. Antibiotic susceptibility testing shows that the compound is more potent than commercial carbapenems against OXA-58-producing, with a clinically sensitive MIC value of 1 μg/mL. Kinetic studies demonstrate that NA-1-157 is a very poor substrate of the enzyme due mainly to a significantly reduced deacylation rate. Mass spectrometry analysis shows that inhibition of OXA-58 by NA-1-157 proceeds through both the classical acyl-enzyme intermediate and a reversible covalent species. Time-resolved X-ray crystallographic studies reveal that upon acylation of the enzyme, the compound causes progressive decarboxylation of the catalytic lysine residue, thus severely impairing deacylation. Overall, this study demonstrates that the carbapenem NA-1-157 is highly resistant to degradation by the OXA-58 carbapenemase.

摘要

细菌中的抗生素耐药性是一个重大的全球健康问题。碳青霉烯酶(一种能降解作为最后防线的碳青霉烯类抗生素的细菌酶)的广泛传播导致了细菌病原体的多重耐药性,并进一步显著加剧了这一问题。由于获得并广泛传播了水解碳青霉烯的D类β-内酰胺酶,它成为主要的医院病原体之一,这大大减少了可用的治疗选择。因此,迫切需要对多重耐药菌有活性的新型抗生素和碳青霉烯酶抑制剂。在此,我们报告了C5α-甲基取代的碳青霉烯NA-1-157与临床上重要的D类碳青霉烯酶之一OXA-58相互作用的特征。抗生素敏感性测试表明,该化合物对产生OXA-58的菌株比市售碳青霉烯类药物更有效,临床敏感MIC值为1μg/mL。动力学研究表明,NA-1-157是该酶的一种非常差的底物,主要是由于脱酰化速率显著降低。质谱分析表明,NA-1-157对OXA-58的抑制作用通过经典的酰基酶中间体和一种可逆的共价物种进行。时间分辨X射线晶体学研究表明,该化合物在酶酰化后会导致催化赖氨酸残基逐渐脱羧,从而严重损害脱酰化作用。总体而言,这项研究表明碳青霉烯NA-1-157对OXA-58碳青霉烯酶的降解具有高度抗性。

相似文献

8
Crystal structure of carbapenemase OXA-58 from Acinetobacter baumannii.鲍曼不动杆菌碳青霉烯酶OXA-58的晶体结构
Antimicrob Agents Chemother. 2014;58(4):2135-43. doi: 10.1128/AAC.01983-13. Epub 2014 Jan 27.

本文引用的文献

2
Drug Discovery in the Field of β-Lactams: An Academic Perspective.β-内酰胺类药物研发:学术视角
Antibiotics (Basel). 2024 Jan 8;13(1):59. doi: 10.3390/antibiotics13010059.
3
Antibiotics in the clinical pipeline as of December 2022.截至 2022 年 12 月处于临床研发管线中的抗生素。
J Antibiot (Tokyo). 2023 Aug;76(8):431-473. doi: 10.1038/s41429-023-00629-8. Epub 2023 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验