Suppr超能文献

C类β-内酰胺酶ADC-1中碳青霉烯酶活性的演变

Evolution of carbapenemase activity in the class C β-lactamase ADC-1.

作者信息

Stewart Nichole K, Toth Marta, Bhattacharya Monolekha, Smith Clyde A, Vakulenko Sergei B

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.

Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA.

出版信息

mBio. 2025 Jun 11;16(6):e0018525. doi: 10.1128/mbio.00185-25. Epub 2025 Apr 28.

Abstract

Antibiotic resistance in bacteria poses a significant threat to public health. Among dozens of available antimicrobial agents, carbapenems are used as drugs of choice for the treatment of serious infections caused by pathogens resistant to other antibiotics. However, their usefulness has been severely compromised due to the emergence and wide spread of carbapenem-resistant clinical isolates worldwide. High-level resistance to carbapenems in bacteria is mediated by the production of β-lactamases from three molecular classes, A, B, and D, but not by class C enzymes. In this study, we selected a triple mutant of the intrinsic class C -derived cephalosporinase ADC-1 (ADC-1) that confers high-level resistance to the carbapenems meropenem, ertapenem, and doripenem. Kinetic experiments demonstrated that the apparent binding affinity, along with the acylation and deacylation rates, were all improved for the mutant enzyme. X-ray crystallography, molecular docking, and molecular dynamics simulations revealed that the amino acid substitutions in ADC-1 produce significant changes in the enzyme active site architecture and binding mode of the carbapenem ertapenem. These changes allow for better positioning of a deacylating water for nucleophilic attack, thus explaining the significantly improved rate of ertapenem deacylation by ADC-1. In this study, we showed for the first time that a class C β-lactamase can produce high-level resistance to carbapenem antibiotics, which underlines the potential for enzymes of this class to evolve such resistance and could further exacerbate the problem of antibiotic resistance in bacteria.IMPORTANCECarbapenems belong to the most widely used family of β-lactam antibiotics and are considered drugs of choice for difficult-to-treat and often deadly infections. Widespread carbapenem-resistant isolates have drastically diminished the utility of these important antibiotics and resulted in high mortality rates. Resistance to carbapenems in clinical pathogens is mainly due to the production of β-lactamases, enzymes that destroy these drugs. Out of the four molecular classes of β-lactamases, various enzymes belonging to classes A, B, and D produce high levels of resistance to carbapenems; however, enzymes of class C have failed to evolve such resistance. Here, we demonstrate that the intrinsic ADC-1 β-lactamase of the clinically important pathogen can evolve high-level resistance to carbapenems by just three amino acid substitutions and disclose the molecular mechanisms of its carbapenemase activity. This study demonstrates the potential for the evolution of carbapenemase activity in class C β-lactamases.

摘要

细菌中的抗生素耐药性对公众健康构成了重大威胁。在几十种现有的抗菌药物中,碳青霉烯类药物被用作治疗由对其他抗生素耐药的病原体引起的严重感染的首选药物。然而,由于全球范围内碳青霉烯类耐药临床分离株的出现和广泛传播,它们的有效性已受到严重损害。细菌对碳青霉烯类药物的高水平耐药性是由A、B和D三类分子的β-内酰胺酶产生介导的,而不是由C类酶介导的。在本研究中,我们选择了一种源自固有C类头孢菌素酶ADC-1(ADC-1)的三重突变体,它对碳青霉烯类药物美罗培南、厄他培南和多利培南具有高水平耐药性。动力学实验表明,突变酶的表观结合亲和力以及酰化和去酰化速率均有所提高。X射线晶体学、分子对接和分子动力学模拟表明,ADC-1中的氨基酸取代导致酶活性位点结构和碳青霉烯类药物厄他培南的结合模式发生显著变化。这些变化使得去酰化水能够更好地定位以进行亲核攻击,从而解释了ADC-1对厄他培南去酰化速率的显著提高。在本研究中,我们首次表明C类β-内酰胺酶可对碳青霉烯类抗生素产生高水平耐药性,这突出了此类酶产生这种耐药性的潜力,并可能进一步加剧细菌中的抗生素耐药性问题。重要性碳青霉烯类属于使用最广泛的β-内酰胺抗生素家族,被认为是治疗难治性且往往致命感染的首选药物。广泛存在的碳青霉烯类耐药分离株极大地降低了这些重要抗生素的效用,并导致高死亡率。临床病原体对碳青霉烯类药物的耐药性主要是由于产生了β-内酰胺酶,即破坏这些药物的酶。在四类β-内酰胺酶中,属于A、B和D类的各种酶对碳青霉烯类药物产生高水平耐药性;然而,C类酶尚未产生这种耐药性。在此,我们证明临床重要病原体的固有ADC-1β-内酰胺酶仅通过三个氨基酸取代就可进化出对碳青霉烯类药物的高水平耐药性,并揭示了其碳青霉烯酶活性的分子机制。本研究证明了C类β-内酰胺酶进化出碳青霉烯酶活性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6168/12153350/d18cb633e05f/mbio.00185-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验