Suppr超能文献

层状钙钛矿氧硫化物光催化剂YTiOS的表面改性以增强可见光驱动的水分解性能

Surface Modifications of Layered Perovskite Oxysulfide Photocatalyst YTiOS to Enhance Visible-Light-Driven Water Splitting.

作者信息

Liang Xizhuang, Vequizo Junie Jhon M, Lin Lihua, Tao Xiaoping, Zhu Qiulian, Nakabayashi Mamiko, Lu Daling, Yoshida Hiroaki, Yamakata Akira, Hisatomi Takashi, Takata Tsuyoshi, Domen Kazunari

机构信息

Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan.

School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, China.

出版信息

Adv Sci (Weinh). 2025 Jan;12(3):e2412326. doi: 10.1002/advs.202412326. Epub 2024 Nov 27.

Abstract

Increasing the efficiency of visible-light-driven water splitting systems will require improvements in the charge separation characteristics and redox reaction kinetics associated with narrow-bandgap photocatalysts. Although the traditional approach of loading a single cocatalyst on selective facets provides reaction sites and reduces the reaction overpotential, pronounced surface charge carrier recombination still results in limited efficiency increases. The present study demonstrates a significant improvement in the hydrogen evolution activity of the layered single-crystal photocatalyst YTiOS. Increased performance is obtained through sequential loading of Pt cocatalysts using a two-step process followed by photodeposition of CrO nanolayers. The stepwise deposition of Pt involved an impregnation-reduction pretreatment with subsequent photodeposition and produced numerous hydrogen production sites while promoting electron capture. The CrO shells formed on Pt nanoparticles further promoted electron transfer from the Pt to the water and inhibited surface carrier recombination. Importantly, it is also possible to construct a Z-scheme overall water splitting system using the optimized YTiOS in combination with surface-modified BiVO in the presence of [Fe(CN)], yielding a solar-to-hydrogen energy conversion efficiency of 0.19%. This work provides insights into precise surface modifications of narrow-bandgap photocatalysts as a means of improving the solar water splitting process.

摘要

提高可见光驱动的水分解系统的效率将需要改善与窄带隙光催化剂相关的电荷分离特性和氧化还原反应动力学。尽管在选择性晶面上负载单一助催化剂的传统方法提供了反应位点并降低了反应过电势,但明显的表面电荷载流子复合仍然导致效率提升有限。本研究表明层状单晶光催化剂YTiOS的析氢活性有显著提高。通过两步法依次负载Pt助催化剂,随后光沉积CrO纳米层,获得了更高的性能。Pt的逐步沉积包括浸渍还原预处理以及随后的光沉积,产生了大量的产氢位点,同时促进了电子捕获。在Pt纳米颗粒上形成的CrO壳层进一步促进了电子从Pt向水的转移,并抑制了表面载流子复合。重要的是,在[Fe(CN)]存在的情况下,使用优化后的YTiOS与表面改性的BiVO组合构建Z型全水分解系统也是可行的,其太阳能到氢能的能量转换效率为0.19%。这项工作为窄带隙光催化剂的精确表面改性提供了见解,作为改善太阳能水分解过程的一种手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60dd/11744574/e59345eef81c/ADVS-12-2412326-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验