Scharp Danielle, Song Jiyoun, Hobensack Mollie, Palmer Mary Happel, Barcelona Veronica, Topaz Maxim
Columbia University School of Nursing, New York, New York, USA.
Department of Biobehavioral Sciences, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA.
J Nurs Scholarsh. 2025 Jan;57(1):152-164. doi: 10.1111/jnu.13038. Epub 2024 Nov 27.
Little is known about the range and frequency of symptoms among older adult home healthcare patients with urinary incontinence, as this information is predominantly contained in clinical notes. Natural language processing can uncover symptom information among older adults with urinary incontinence to promote holistic, equitable care.
We conducted a secondary analysis of cross-sectional data collected between January 1, 2015, and December 31, 2017, from the largest HHC agency in the Northeastern United States. We aimed to develop and test a natural language processing algorithm to extract symptom information from clinical notes for older adults with urinary incontinence and analyze differences in symptom documentation by race or ethnicity.
Symptoms were identified through expert clinician-driven Delphi survey rounds. We developed a natural language processing algorithm for symptom identification in clinical notes, examined symptom documentation frequencies, and analyzed differences in symptom documentation by race or ethnicity using chi-squared tests and logistic regression models.
In total, 39,179 home healthcare episodes containing 1,098,419 clinical notes for 29,981 distinct patients were included. Nearly 40% of the sample represented racially or ethnically minoritized groups (i.e., 18% Black, 14% Hispanic, 7% Asian/Pacific Islander, 0.3% multi-racial, and 0.2% Native American). Based on expert clinician-driven Delphi survey rounds, the following symptoms were identified: anxiety, dizziness, constipation, syncope, tachycardia, urinary frequency/urgency, urinary hesitancy/retention, and vision impairment/blurred vision. The natural language processing algorithm achieved excellent performance (average precision of 0.92). Approximately 29% of home healthcare episodes had symptom information documented. Compared to home healthcare episodes for White patients, home healthcare episodes for Asian/Pacific Islander (odds ratio = 0.74, 95% confidence interval [0.67-0.80], p < 0.001), Black (odds ratio = 0.69, 95% confidence interval [0.64-0.73], p < 0.001), and Hispanic (odds ratio = 0.91, 95% confidence interval [0.85-0.97], p < 0.01) patients were less likely to have any symptoms documented in clinical notes.
We found multidimensional symptoms and differences in symptom documentation among a diverse cohort of older adults with urinary incontinence, underscoring the need for comprehensive assessments by clinicians. Future research should apply natural language processing to other data sources and investigate symptom clusters to inform holistic care strategies for diverse populations.
Knowledge of symptoms of older adult home healthcare patients with urinary incontinence can facilitate comprehensive assessments, health equity, and improved outcomes.
对于老年居家医疗护理中尿失禁患者的症状范围和频率,我们知之甚少,因为这些信息主要包含在临床记录中。自然语言处理可以揭示老年尿失禁患者的症状信息,以促进全面、公平的护理。
我们对2015年1月1日至2017年12月31日期间从美国东北部最大的居家医疗护理机构收集的横断面数据进行了二次分析。我们旨在开发并测试一种自然语言处理算法,以从老年尿失禁患者的临床记录中提取症状信息,并分析按种族或族裔划分的症状记录差异。
通过专家临床医生主导的德尔菲调查轮次来识别症状。我们开发了一种用于在临床记录中识别症状的自然语言处理算法,检查症状记录频率,并使用卡方检验和逻辑回归模型分析按种族或族裔划分的症状记录差异。
总共纳入了39179次居家医疗护理事件,其中包含针对29981名不同患者的1098419条临床记录。近40%的样本代表种族或族裔少数群体(即18%为黑人,14%为西班牙裔,7%为亚裔/太平洋岛民,0.3%为多种族,0.2%为美国原住民)。基于专家临床医生主导的德尔菲调查轮次,识别出以下症状:焦虑、头晕、便秘、晕厥、心动过速、尿频/尿急、排尿犹豫/潴留以及视力障碍/视力模糊。自然语言处理算法表现出色(平均精度为0.92)。约29%的居家医疗护理事件记录了症状信息。与白人患者的居家医疗护理事件相比,亚裔/太平洋岛民患者(优势比=0.74,95%置信区间[0.67 - 0.80],p<0.001)、黑人患者(优势比=0.69,95%置信区间[0.64 - 0.73],p<0.001)和西班牙裔患者(优势比=0.9l,95%置信区间[0.85 - 0.97],p<0.01)的临床记录中记录任何症状的可能性较小。
我们在不同的老年尿失禁患者队列中发现了多维症状以及症状记录方面的差异,这凸显了临床医生进行全面评估的必要性。未来的研究应将自然语言处理应用于其他数据源,并调查症状集群,以为不同人群的整体护理策略提供信息。
了解老年居家医疗护理中尿失禁患者的症状有助于进行全面评估、实现健康公平并改善治疗结果。