Methling Rafael, Greiter Michael, Al-Zawity Jiwar, Müller Mareike, Schönherr Holger, Kuckling Dirk
Department of Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany.
Physical Chemistry I, Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany.
Macromol Biosci. 2025 Jan;25(1):e2400261. doi: 10.1002/mabi.202400261. Epub 2024 Nov 27.
A strategy for multifunctional biosurfaces exploiting multiblock copolymers and the antipolyelectrolyte effect is reported. Combining a polyzwitterionic/antifouling and a polycationic/antibacterial block with a central anchoring block for attachment to titanium oxide surfaces affords surface coatings that exhibit antifouling properties against proteins and allow for surface regeneration by clearing adhering proteins by employing a salt washing step. The surfaces also kill bacteria by contact killing, which is aided by a nonfouling block. The synthesis of block copolymers of 4-vinyl pyridine (VP), dimethyl 4-vinylbenzyl phosphonate (DMVBP), and 4-vinylbenzyltrimethyl ammonium chloride (TMA) is achieved on the multigram scale via RAFT polymerization with good end group retention and narrow dispersities. By polymer analogous reactions, poly(4-vinyl pyridinium propane sulfonate-block-4-vinylbenzyl phosphonic acid-block-4-vinylbenzyl trimethylammonium chloride) (P(VSP-b-PA-b-TMA)) is obtained. The antifouling properties against the model protein pepsin and the salt-induced surface regeneration are shown in surface plasmon resonance (SPR) experiments, while independently the antibacterial and antifouling properties of coated titanium substrates are successfully tested in preliminary microbiological assays against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This strategy may contribute to the development of long-term effective antibacterial implant surface coatings to suppress biomedical device-associated infections.
报道了一种利用多嵌段共聚物和反聚电解质效应制备多功能生物表面的策略。将聚两性离子/抗污嵌段和聚阳离子/抗菌嵌段与用于附着在二氧化钛表面的中心锚定嵌段相结合,可得到具有抗蛋白质污染特性的表面涂层,并通过盐洗步骤清除附着的蛋白质来实现表面再生。这些表面还通过接触杀灭细菌,这得益于抗污嵌段。通过可逆加成-断裂链转移(RAFT)聚合在多克规模上实现了4-乙烯基吡啶(VP)、4-乙烯基苄基膦酸二甲酯(DMVBP)和4-乙烯基苄基三甲基氯化铵(TMA)的嵌段共聚物的合成,具有良好的端基保留率和窄分散度。通过聚合物类似反应,得到了聚(4-乙烯基吡啶丙烷磺酸盐-嵌段-4-乙烯基苄基膦酸-嵌段-4-乙烯基苄基三甲基氯化铵)(P(VSP-b-PA-b-TMA))。表面等离子体共振(SPR)实验显示了对模型蛋白胃蛋白酶的抗污性能和盐诱导的表面再生,同时独立地在针对金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)的初步微生物学测定中成功测试了涂覆钛基材的抗菌和抗污性能。该策略可能有助于开发长期有效的抗菌植入物表面涂层,以抑制与生物医学设备相关的感染。