Chen Lijun, Chen Peng, Jia Yanxing
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China.
Acc Chem Res. 2024 Dec 17;57(24):3524-3540. doi: 10.1021/acs.accounts.4c00654. Epub 2024 Nov 27.
Currently, the frontier challenges in total synthesis pertain to increasing the synthetic efficiency and enabling the divergent synthesis of a number of natural products. Bioinspired synthesis has been well recognized as an effective approach to increasing synthetic efficiency. Especially, when bioinspired synthesis was applied at late-stage skeletal diversification to generate various natural products with distinct carbon skeletons, it held special promise for achieving both goals. In our laboratory, bioinspired synthesis has served as one of two long-standing principles for facilitating the efficient synthesis of natural products. In this Account, we summarize our endeavors and journeys in the bioinspired synthesis of natural products. We categorize our work into three parts based on the imitation of biosynthetic reactions and processes. (1) To mimic the key cyclization steps. Inspired by the biosynthetic process that formed the core skeleton, we developed new synthetic methods to enable the rapid and efficient construction of the core skeletons of the targeted molecules, ultimately leading to their concise total synthesis, for example, seven-step total synthesis of lamellarins D and H featuring three bioinspired oxidative coupling reactions, seven-step total synthesis of clavicipitic acid highlighted by a C-H activation/aminocyclization cascade reaction, eight-step total synthesis of phalarine via a bioinspired oxidative coupling, seven-step total synthesis of α-cyclopiazonic acid, and ten-step total synthesis of speradine C through a bioinspired cascade cyclization reaction initiated by the benzylic carbocation of indole. (2) To mimic the revised biosynthetic pathway proposed by us. In some cases, the proposed biosynthetic processes may be flawed, as they contradict some basic principles of chemistry. Thus, an alternative biosynthetic process must be proposed and investigated. We showcase the total synthesis of euphorikanin A through a bioinspired benzilic acid-type rearrangement and bipolarolides A and B via a bioinspired Prins reaction/ether formation cascade cyclization. (3) To mimic the skeletal diversification process. Nature usually synthesizes a multitude of products from a key common intermediate in a divergent manner. Biogenic skeletal diversification to generate various natural products with distinct carbon skeletons has also drawn our attention. Compared with single-target-oriented synthesis, skeletal-diversity-oriented synthesis of natural products remains underexplored due to its high synthetic challenges. We showcased the divergent total syntheses of ten diterpenoids with three distinct skeletons and six diterpenoids with three distinct skeletons, which were achieved with unprecedented ease and high efficiency by imitation of the proposed biogenic skeletal diversification process. These two successful projects can serve as inspiration for the application of the bioinspired skeletal diversification strategy to other skeletally diverse natural products.
目前,全合成领域的前沿挑战在于提高合成效率以及实现多种天然产物的发散性合成。生物启发合成已被公认为提高合成效率的有效方法。特别是,当生物启发合成应用于后期骨架多样化以生成具有不同碳骨架的各种天然产物时,它为实现这两个目标带来了特殊的希望。在我们实验室,生物启发合成一直是促进天然产物高效合成的两个长期原则之一。在本综述中,我们总结了我们在天然产物生物启发合成方面的努力和历程。我们根据对生物合成反应和过程的模仿将我们的工作分为三个部分。(1)模仿关键环化步骤。受形成核心骨架的生物合成过程启发,我们开发了新的合成方法,以实现目标分子核心骨架的快速高效构建,最终实现其简洁的全合成,例如,片螺素D和H的七步全合成,其中包含三个生物启发的氧化偶联反应;棒曲霉素的七步全合成,其亮点是C-H活化/氨基环化级联反应;通过生物启发的氧化偶联实现法拉林的八步全合成;α-环匹阿尼酸的七步全合成;以及通过由吲哚苄基碳正离子引发的生物启发级联环化反应实现斯佩拉定C的十步全合成。(2)模仿我们提出的修正生物合成途径。在某些情况下,提出的生物合成过程可能存在缺陷,因为它们与一些化学基本原理相矛盾。因此,必须提出并研究替代的生物合成过程。我们展示了通过生物启发的二苯乙醇酸型重排实现大戟烷宁A的全合成以及通过生物启发的普林斯反应/醚形成级联环化实现双极内酯A和B的全合成。(3)模仿骨架多样化过程。自然界通常以发散的方式从一个关键的共同中间体合成多种产物。生物源骨架多样化以生成具有不同碳骨架的各种天然产物也引起了我们的关注。与单靶点导向合成相比,由于其高合成挑战性,天然产物的骨架多样性导向合成仍未得到充分探索。我们展示了具有三种不同骨架的十种二萜类化合物和具有三种不同骨架的六种二萜类化合物的发散全合成,通过模仿提出的生物源骨架多样化过程,以前所未有的简便性和高效率实现了这些合成。这两个成功的项目可为将生物启发的骨架多样化策略应用于其他骨架多样的天然产物提供灵感。