Moser A C, Fritz J, Kesselring A, Schüssler F, Otahal A, Nehrer S
Centre for Regenerative Medicine, Department for Health Science, University for Continuing Education Krems, Krems an der Donau, Austria; Austrian Cluster for Tissue Regeneration, Austria.
Centre for Regenerative Medicine, Department for Health Science, University for Continuing Education Krems, Krems an der Donau, Austria; Austrian Cluster for Tissue Regeneration, Austria.
J Mech Behav Biomed Mater. 2025 Feb;162:106830. doi: 10.1016/j.jmbbm.2024.106830. Epub 2024 Nov 21.
To investigate the suitability of different material compositions and structural designs for 3D-printed meniscus implants using finite element analysis (FEA) to improve joint function after meniscal injury and guide future implant development.
This experimental study involved in-silico testing of a meniscus model developed from two materials: a specially formulated hydrogel composed of silk fibroin (SF), gelatine, and decellularized meniscus-derived extracellular matrix (MD-dECM), and polyurethane (PU) with stiffness levels of 54 and 205 MPa. Both single-material implants and a two-volumetric meniscus model with an SF/gelatine/MD-dECM core and a PU shell were analysed using FEA to simulate the biomechanical performance under physiological conditions.
The hydrogel alone was found to be unsuitable for long-term use due to instability in material properties beyond two weeks. PU 54 closely replicated the biomechanical properties of an intact meniscus, particularly in terms of contact pressure and stress distribution. However, hybrid implants combining PU 54 with hydrogel showed potential but required further optimization to reduce stress peaks. In contrast, implants with a PU 205 shell generated higher induced stresses, increasing the risk of material failure.
FEA proves to be a valuable tool in the design and optimization of meniscal implants. The findings suggest that softer PU 54 is a promising material for mimicking natural meniscus properties, while stiffer materials may require design modifications to mitigate stress concentrations. These insights are crucial for refining implant designs and selecting appropriate material combinations before physical prototype production, potentially reducing costs, time, and the risk of implant failure.
通过有限元分析(FEA)研究不同材料成分和结构设计对3D打印半月板植入物的适用性,以改善半月板损伤后的关节功能,并指导未来植入物的开发。
本实验研究涉及对由两种材料制成的半月板模型进行计算机模拟测试:一种由丝素蛋白(SF)、明胶和脱细胞半月板衍生细胞外基质(MD-dECM)组成的特殊配方水凝胶,以及刚度水平分别为54和205MPa的聚氨酯(PU)。使用FEA对单材料植入物以及具有SF/明胶/MD-dECM核心和PU外壳的两体积半月板模型进行分析,以模拟生理条件下的生物力学性能。
发现单独的水凝胶由于两周后材料性能不稳定而不适合长期使用。PU 54紧密复制了完整半月板的生物力学性能,特别是在接触压力和应力分布方面。然而,将PU 54与水凝胶结合的混合植入物显示出潜力,但需要进一步优化以减少应力峰值。相比之下,具有PU 205外壳的植入物产生更高的诱导应力,增加了材料失效的风险。
FEA被证明是半月板植入物设计和优化中的一种有价值的工具。研究结果表明,较软的PU 54是模仿天然半月板特性的有前途的材料,而较硬的材料可能需要进行设计修改以减轻应力集中。这些见解对于在制造物理原型之前完善植入物设计和选择合适的材料组合至关重要,有可能降低成本、时间和植入物失败的风险。