Li Xinyu, Peng Chuo, Liu Hongyu, Dong Mingjie, Li Shujuan, Liang Weixin, Li Xia, Bai Jing
College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China.
Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan 571199, China.
Hum Mol Genet. 2025 Feb 1;34(3):251-264. doi: 10.1093/hmg/ddae176.
Cancer development involves a complex interplay between genetic and epigenetic factors, with emerging evidence highlighting the pivotal role of competitive endogenous RNA (ceRNA) networks in regulating gene expression. However, the influence of ceRNA networks by aberrant DNA methylation remains incompletely understood. In our study, we proposed DMceNet, a computational method to characterize the effects of DNA methylation on ceRNA regulatory mechanisms and apply it across eight prevalent cancers. By integrating methylation and transcriptomic data, we constructed methylation-driven ceRNA networks and identified a dominant role of lncRNAs within these networks in two key ways: (i) 17 cancer-shared differential methylation lncRNAs (DMlncs), including PVT1 and CASC2, form a Common Cancer Network (CCN) affecting key pathways such as the G2/M checkpoint, and (ii) 24 cancer-specific DMlncs construct unique ceRNA networks for each cancer type. For instance, in LUAD and STAD, hypomethylation drives DMlncs like PCAT6 and MINCR, disrupting the Wnt signaling pathway and apoptosis. We further investigated the characteristics of these methylation-driven ceRNA networks at the cellular level, revealing how methylation-driven dysregulation varies across distinct cell populations within the tumor microenvironment. Our findings also demonstrate the prognostic potential of cancer-specific ceRNA relationships, highlighting their relevance in predicting patient survival outcomes. This integrated transcriptomic and epigenomic analysis provides new insights into cancer biology and regulatory mechanisms.
癌症的发展涉及遗传和表观遗传因素之间复杂的相互作用,越来越多的证据表明竞争性内源RNA(ceRNA)网络在调节基因表达中起关键作用。然而,异常DNA甲基化对ceRNA网络的影响仍未完全了解。在我们的研究中,我们提出了DMceNet,这是一种计算方法,用于表征DNA甲基化对ceRNA调控机制的影响,并将其应用于八种常见癌症。通过整合甲基化和转录组数据,我们构建了甲基化驱动的ceRNA网络,并以两种关键方式确定了lncRNA在这些网络中的主导作用:(i)17种癌症共享的差异甲基化lncRNA(DMlnc),包括PVT1和CASC2,形成一个影响G2/M检查点等关键途径的共同癌症网络(CCN),以及(ii)24种癌症特异性DMlnc为每种癌症类型构建独特的ceRNA网络。例如,在肺腺癌(LUAD)和胃腺癌(STAD)中,低甲基化驱动PCAT6和MINCR等DMlnc,破坏Wnt信号通路和细胞凋亡。我们进一步在细胞水平上研究了这些甲基化驱动的ceRNA网络的特征,揭示了甲基化驱动的失调在肿瘤微环境中不同细胞群体之间的差异。我们的研究结果还证明了癌症特异性ceRNA关系的预后潜力,突出了它们在预测患者生存结果方面的相关性。这种整合的转录组学和表观基因组学分析为癌症生物学和调控机制提供了新的见解。