Tune Travis, Kooiker Kristina B, Davis Jennifer, Daniel Thomas, Moussavi-Harami Farid
Department of Biology, University of Washington, Seattle, Washington; Center for Transnational Muscle Research, University of Washington, Seattle, Washington.
Center for Transnational Muscle Research, University of Washington, Seattle, Washington; Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington.
Biophys J. 2025 Jan 7;124(1):179-191. doi: 10.1016/j.bpj.2024.11.3310. Epub 2024 Nov 26.
Cardiomyopathies, often caused by mutations in genes encoding muscle proteins, are traditionally treated by phenotyping hearts and addressing symptoms post irreversible damage. With advancements in genotyping, early diagnosis is now possible, potentially introducing earlier treatment. However, the intricate structure of muscle and its myriad proteins make treatment predictions challenging. Here, we approach the problem of estimating therapeutic targets for a mutation in mouse muscle using a spatially explicit half sarcomere muscle model. We selected nine rate parameters in our model linked to both small molecules and cardiomyopathy-causing mutations. We then randomly varied these rate parameters and simulated an isometric twitch for each combination to generate a large training data set. We used this data set to train a conditional variational autoencoder, a technique used in Bayesian parameter estimation. Given simulated or experimental isometric twitches, this machine learning model is able to then predict the set of rate parameters that are most likely to yield that result. We then predict the set of rate parameters associated with twitches from control mice with the cardiac troponin C (cTnC) I61Q variant and control twitches treated with the myosin activator Danicamtiv, as well as model parameters that recover the abnormal I61Q cTnC twitches.
心肌病通常由编码肌肉蛋白的基因突变引起,传统上通过对心脏进行表型分析并在出现不可逆损伤后解决症状来治疗。随着基因分型技术的进步,现在可以进行早期诊断,有可能更早地进行治疗。然而,肌肉的复杂结构及其众多蛋白质使得治疗预测具有挑战性。在这里,我们使用空间明确的半肌节肌肉模型来解决估计小鼠肌肉中突变治疗靶点的问题。我们在模型中选择了九个与小分子和导致心肌病的突变相关的速率参数。然后,我们随机改变这些速率参数,并对每种组合模拟等长收缩,以生成一个大型训练数据集。我们使用这个数据集来训练条件变分自动编码器,这是一种用于贝叶斯参数估计的技术。给定模拟或实验性等长收缩,这个机器学习模型能够预测最有可能产生该结果的速率参数集。然后,我们预测与携带心肌肌钙蛋白C(cTnC)I61Q变体的对照小鼠的收缩以及用肌球蛋白激活剂达尼卡米夫治疗的对照收缩相关的速率参数集,以及恢复异常I61Q cTnC收缩的模型参数。