Song Qingjun, Wang Jiuxin, Song Qinghui, Li Kai, Hao Wenchao, Jiang Haiyan
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, China.
Sci Rep. 2024 Nov 27;14(1):29507. doi: 10.1038/s41598-024-80954-6.
The mechanical fault diagnosis of HVCB is important to ensure the stability of electric power systems. Aiming at the problem of poor diagnostic performance of deep learning methods under limited samples, this paper proposes an HVCB operating mechanism fault diagnosis model (multi-channel CNN-SABO-SVM, MCCSS) based on multimodal data fusion features and Subtraction-Average-Based Optimizer (SABO). This model extracts and fuses features from the input two-dimensional data using a multi-channel CNN network and then uses the multimodal data fusion features to diagnose HVCB faults. Additionally, the SVM is used instead of the Softmax classifier to classify the fused features of vibration and sound, compensating for the poor diagnostic performance and generalization ability of the CNN network in small sample data scenarios. To further enhance the fault diagnosis performance of the SVM, the SABO is introduced for hyperparameter optimization of the SVM classifier. An HVCB fault test platform was established to train and test the model with limited data. The experimental results show that, compared with the multi-channel CNN-SVM and the CNN model based on unimodal signals, the proposed multi-channel CNN-SABO-SVM model improves the accuracy by 2.66% and 10.66%, respectively, and effectively addresses the challenge of circuit breaker fault diagnosis with limited samples.
高压断路器(HVCB)的机械故障诊断对于确保电力系统的稳定性至关重要。针对深度学习方法在样本有限情况下诊断性能不佳的问题,本文提出了一种基于多模态数据融合特征和基于减法平均的优化器(SABO)的高压断路器操作机构故障诊断模型(多通道CNN-SABO-SVM,MCCSS)。该模型使用多通道CNN网络从输入的二维数据中提取并融合特征,然后利用多模态数据融合特征诊断高压断路器故障。此外,使用支持向量机(SVM)代替Softmax分类器对振动和声音的融合特征进行分类,弥补了CNN网络在小样本数据场景下诊断性能和泛化能力较差的问题。为进一步提高支持向量机的故障诊断性能,引入SABO对支持向量机分类器进行超参数优化。搭建了高压断路器故障测试平台,用有限的数据对模型进行训练和测试。实验结果表明,与多通道CNN-SVM和基于单模态信号的CNN模型相比,所提出的多通道CNN-SABO-SVM模型的准确率分别提高了2.66%和10.66%,有效解决了样本有限情况下断路器故障诊断的难题。