Narváez-Bandera Isis, Lui Ashley, Ayalew Mekonnen Yonatan, Rubio Vanessa, Sulman Noah, Wilson Christopher, Ackerman Hayley D, Ospina Oscar E, Gonzalez-Calderon Guillermo, Flores Elsa, Li Qian, Chen Ann, Fridley Brooke, Stewart Paul
Department of Biostatistics and Bioinformatics.
Department of Molecular Oncology.
bioRxiv. 2024 Dec 17:2024.11.12.623208. doi: 10.1101/2024.11.12.623208.
The integration of metabolomics with other omics ("multi-omics") offers complementary insights into disease biology. However, this integration remains challenging due to the fragmented landscape of current methodologies, which often require programming experience or bioinformatics expertise. Moreover, existing approaches are limited in their ability to accommodate unidentified metabolites, resulting in the exclusion of a significant portion of data from untargeted metabolomics experiments. Here, we introduce , a novel approach that uses a graphical lasso to construct network modules for integration and analysis of multi-omics data. uses a horizontal integration strategy, allowing metabolomics data to be analyzed alongside proteomics or transcriptomics to explore complex molecular associations within biological systems. Importantly, it can incorporate both identified and unidentified metabolites, addressing a key limitation of existing methodologies. is available as a user-friendly R Shiny application that requires no programming experience (https://imodmix.moffitt.org), and it includes example data from several publicly available multi-omic studies for exploration. An R package is available for advanced users (https://github.com/biodatalab/iModMix).
Shiny application: https://imodmix.moffitt.org. The R package and source code: https://github.com/biodatalab/iModMix.
代谢组学与其他组学(“多组学”)的整合为疾病生物学提供了互补的见解。然而,由于当前方法的碎片化格局,这种整合仍然具有挑战性,这些方法通常需要编程经验或生物信息学专业知识。此外,现有方法在容纳未鉴定代谢物方面能力有限,导致大量非靶向代谢组学实验数据被排除。在此,我们介绍了iModMix,这是一种使用图形套索构建网络模块以整合和分析多组学数据的新方法。iModMix采用水平整合策略,允许代谢组学数据与蛋白质组学或转录组学数据一起分析,以探索生物系统内复杂的分子关联。重要的是,它可以纳入已鉴定和未鉴定的代谢物,解决了现有方法的一个关键限制。iModMix以用户友好的R Shiny应用程序形式提供,无需编程经验(https://imodmix.moffitt.org),并且它包括来自几项公开可用的多组学研究的示例数据以供探索。高级用户可使用R包(https://github.com/biodatalab/iModMix)。
Shiny应用程序:https://imodmix.moffitt.org。R包和源代码:https://github.com/biodatalab/iModMix。