Wu Eric, Bieniosek Matthew, Wu Zhenqin, Thakkar Nitya, Charville Gregory W, Makky Ahmad, Schürch Christian, Huyghe Jeroen R, Peters Ulrike, Li Christopher I, Li Li, Giba Hannah, Behera Vivek, Raman Arjun, Trevino Alexandro E, Mayer Aaron T, Zou James
Enable Medicine, Menlo Park, CA, USA.
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
bioRxiv. 2024 Nov 18:2024.11.10.622859. doi: 10.1101/2024.11.10.622859.
Hematoxylin and eosin (H&E) is a common and inexpensive histopathology assay. Though widely used and information-rich, it cannot directly inform about specific molecular markers, which require additional experiments to assess. To address this gap, we present a deep-learning framework that computationally imputes the expression and localization of dozens of proteins from H&E images. Our model is trained on a dataset of over 1000 paired and aligned H&E and multiplex immunofluorescence (mIF) samples from 20 tissues and disease conditions, spanning over 16 million cells. Validation of our staining method on held-out H&E samples demonstrates that the predicted biomarkers are effective in identifying cell phenotypes, particularly distinguishing lymphocytes such as B cells and T cells, which are not readily discernible with H&E staining alone. Additionally, facilitates the robust identification of stromal and epithelial microenvironments and immune cell subtypes like tumor-infiltrating lymphocytes (TILs), which are important for understanding tumor-immune interactions and can help inform treatment strategies in cancer research.
苏木精和伊红(H&E)是一种常见且成本低廉的组织病理学检测方法。尽管其应用广泛且信息丰富,但它无法直接提供特定分子标志物的信息,而这些信息需要额外的实验来评估。为了填补这一空白,我们提出了一个深度学习框架,该框架可以从H&E图像中通过计算推断出数十种蛋白质的表达和定位。我们的模型在一个包含来自20种组织和疾病状况的1000多个配对且对齐的H&E和多重免疫荧光(mIF)样本的数据集上进行训练,这些样本涵盖了超过1600万个细胞。在保留的H&E样本上对我们的染色方法进行验证表明,预测的生物标志物在识别细胞表型方面是有效的,特别是能够区分淋巴细胞,如B细胞和T细胞,这些细胞仅通过H&E染色是不容易辨别的。此外,它有助于对基质和上皮微环境以及免疫细胞亚型(如肿瘤浸润淋巴细胞(TILs))进行可靠识别,这对于理解肿瘤免疫相互作用很重要,并且有助于为癌症研究中的治疗策略提供信息。