Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
Nature. 2024 Oct;634(8035):970-978. doi: 10.1038/s41586-024-07894-z. Epub 2024 Sep 4.
Histopathology image evaluation is indispensable for cancer diagnoses and subtype classification. Standard artificial intelligence methods for histopathology image analyses have focused on optimizing specialized models for each diagnostic task. Although such methods have achieved some success, they often have limited generalizability to images generated by different digitization protocols or samples collected from different populations. Here, to address this challenge, we devised the Clinical Histopathology Imaging Evaluation Foundation (CHIEF) model, a general-purpose weakly supervised machine learning framework to extract pathology imaging features for systematic cancer evaluation. CHIEF leverages two complementary pretraining methods to extract diverse pathology representations: unsupervised pretraining for tile-level feature identification and weakly supervised pretraining for whole-slide pattern recognition. We developed CHIEF using 60,530 whole-slide images spanning 19 anatomical sites. Through pretraining on 44 terabytes of high-resolution pathology imaging datasets, CHIEF extracted microscopic representations useful for cancer cell detection, tumour origin identification, molecular profile characterization and prognostic prediction. We successfully validated CHIEF using 19,491 whole-slide images from 32 independent slide sets collected from 24 hospitals and cohorts internationally. Overall, CHIEF outperformed the state-of-the-art deep learning methods by up to 36.1%, showing its ability to address domain shifts observed in samples from diverse populations and processed by different slide preparation methods. CHIEF provides a generalizable foundation for efficient digital pathology evaluation for patients with cancer.
组织病理学图像评估对于癌症诊断和亚型分类是不可或缺的。用于组织病理学图像分析的标准人工智能方法侧重于针对每个诊断任务优化专门的模型。尽管这些方法取得了一些成功,但它们通常对不同数字化协议生成的图像或来自不同人群的样本的通用性有限。在这里,为了解决这一挑战,我们设计了临床组织病理学成像评估基金会(CHIEF)模型,这是一个通用的弱监督机器学习框架,用于提取用于系统癌症评估的病理学成像特征。CHIEF 利用两种互补的预训练方法来提取多样化的病理学表示:用于瓦片级特征识别的无监督预训练和用于全幻灯片模式识别的弱监督预训练。我们使用涵盖 19 个解剖部位的 60,530 张全幻灯片图像来开发 CHIEF。通过在 44TB 的高分辨率病理学成像数据集上进行预训练,CHIEF 提取了对癌细胞检测、肿瘤起源识别、分子特征描述和预后预测有用的微观表示。我们使用来自 24 个国际医院和队列的 32 个独立幻灯片集的 19,491 张全幻灯片图像成功地验证了 CHIEF。总体而言,CHIEF 的表现优于最先进的深度学习方法,最高可达 36.1%,表明它有能力解决来自不同人群和使用不同幻灯片制备方法处理的样本中观察到的领域转移。CHIEF 为癌症患者的高效数字病理学评估提供了一个可推广的基础。