Suppr超能文献

基于电子健康记录使用机器学习预测药物不良事件:一项系统评价和荟萃分析。

Predicting adverse drug event using machine learning based on electronic health records: a systematic review and meta-analysis.

作者信息

Hu Qiaozhi, Chen Yuxian, Zou Dan, He Zhiyao, Xu Ting

机构信息

Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.

出版信息

Front Pharmacol. 2024 Nov 13;15:1497397. doi: 10.3389/fphar.2024.1497397. eCollection 2024.

Abstract

INTRODUCTION

Adverse drug events (ADEs) pose a significant challenge in current clinical practice. Machine learning (ML) has been increasingly used to predict specific ADEs using electronic health record (EHR) data. This systematic review provides a comprehensive overview of the application of ML in predicting specific ADEs based on EHR data.

METHODS

A systematic search of PubMed, Web of Science, Embase, and IEEE Xplore was conducted to identify relevant articles published from the inception to 20 May 2024. Studies that developed ML models for predicting specific ADEs or ADEs associated with particular drugs were included using EHR data.

RESULTS

A total of 59 studies met the inclusion criteria, covering 15 drugs and 15 ADEs. In total, 38 machine learning algorithms were reported, with random forest (RF) being the most frequently used, followed by support vector machine (SVM), eXtreme gradient boosting (XGBoost), decision tree (DT), and light gradient boosting machine (LightGBM). The performance of the ML models was generally strong, with an average area under the curve (AUC) of 76.68% ± 10.73, accuracy of 76.00% ± 11.26, precision of 60.13% ± 24.81, sensitivity of 62.35% ± 20.19, specificity of 75.13% ± 16.60, and an F1 score of 52.60% ± 21.10. The combined sensitivity, specificity, diagnostic odds ratio (DOR), and AUC from the summary receiver operating characteristic (SROC) curve using a random effects model were 0.65 (95% CI: 0.65-0.66), 0.89 (95% CI: 0.89-0.90), 12.11 (95% CI: 8.17-17.95), and 0.8069, respectively. The risk factors associated with different drugs and ADEs varied.

DISCUSSION

Future research should focus on improving standardization, conducting multicenter studies that incorporate diverse data types, and evaluating the impact of artificial intelligence predictive models in real-world clinical settings.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024565842, identifier CRD42024565842.

摘要

引言

药物不良事件(ADEs)在当前临床实践中构成了重大挑战。机器学习(ML)已越来越多地用于利用电子健康记录(EHR)数据预测特定的药物不良事件。本系统评价全面概述了基于电子健康记录数据的机器学习在预测特定药物不良事件中的应用。

方法

对PubMed、科学网、Embase和IEEE Xplore进行系统检索,以识别从创刊到2024年5月20日发表的相关文章。纳入使用电子健康记录数据开发用于预测特定药物不良事件或与特定药物相关的药物不良事件的机器学习模型的研究。

结果

共有59项研究符合纳入标准,涵盖15种药物和15种药物不良事件。总共报告了38种机器学习算法,其中随机森林(RF)使用最为频繁,其次是支持向量机(SVM)、极端梯度提升(XGBoost)、决策树(DT)和轻梯度提升机(LightGBM)。机器学习模型的性能总体较强,曲线下面积(AUC)平均为76.68%±10.73,准确率为76.00%±11.26,精确率为60.13%±24.81,灵敏度为62.35%±20.19,特异性为75.13%±16.60,F1评分为52.60%±21.10。使用随机效应模型从汇总接受者操作特征(SROC)曲线得出的综合灵敏度、特异性、诊断比值比(DOR)和AUC分别为0.65(95%CI:0.65 - 0.66)、0.89(95%CI:0.89 - 0.90)、12.11(95%CI:8.17 - 17.95)和0.8069。与不同药物和药物不良事件相关的风险因素各不相同。

讨论

未来的研究应侧重于提高标准化,开展纳入多种数据类型的多中心研究,并评估人工智能预测模型在实际临床环境中的影响。

系统评价注册

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024565842,标识符CRD42024565842。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/badb/11600142/402222a1b923/fphar-15-1497397-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验