Suppr超能文献

应用机器学习技术预测药物相关副作用:政策简报。

Applying Machine Learning Techniques to Predict Drug-Related Side Effect: A Policy Brief.

作者信息

Toni Esmaeel, Ayatollahi Haleh

机构信息

Student Research Committee, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran.

Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran.

出版信息

Inquiry. 2025 Jan-Dec;62:469580251335805. doi: 10.1177/00469580251335805. Epub 2025 Jun 13.

Abstract

Drug safety is a critical aspect of public health, yet traditional detection methods may miss rare or long-term side effects. Recently, machine learning (ML) techniques have shown promise in predicting drug-related side effects earlier in the development pipeline. The objective of this policy brief was to propose evidence-based policy options for using ML techniques to predict drug-related side effects. This policy brief was developed upon a previously published scoping review of relevant studies. A secondary analysis synthesized key barriers and opportunities relevant to policy development. Key findings revealed some challenges in data standardization, interpretability, and regulatory alignment. Moreover, the results highlighted the potential of explainable ML and cross-sector collaboration to improve prediction accuracy and fairness. Five policy recommendations were proposed: (1) establishing standardized data collection and secure protocol sharing; (2) funding ML model development and rigorous validation; (3) integrating ML into drug development pipelines; (4) increasing public awareness through targeted education; and (5) implementing fairness regulations to address bias. These recommendations require joint efforts from governments, regulatory bodies, pharmaceutical firms, and academia to be implemented in practice. While ML offers transformative potential for drug safety, its real-world implementation faces ethical, regulatory, and technical hurdles. Policies must ensure model transparency, promote equity, and support infrastructure for ML adoption. Through interdisciplinary coordination and evidence-based policymaking, stakeholders can responsibly advance ML use in drug development to enhance patient outcomes.

摘要

药物安全是公共卫生的关键方面,但传统检测方法可能会遗漏罕见或长期的副作用。最近,机器学习(ML)技术在药物研发流程的早期预测药物相关副作用方面显示出了前景。本政策简报的目的是提出基于证据的政策选项,以利用ML技术预测药物相关副作用。本政策简报是在之前发表的相关研究范围综述的基础上编写的。二次分析综合了与政策制定相关的关键障碍和机遇。主要发现揭示了数据标准化、可解释性和监管一致性方面的一些挑战。此外,结果突出了可解释的ML和跨部门合作在提高预测准确性和公平性方面的潜力。提出了五项政策建议:(1)建立标准化数据收集和安全协议共享;(2)资助ML模型开发和严格验证;(3)将ML整合到药物研发流程中;(4)通过有针对性的教育提高公众意识;(5)实施公平法规以解决偏差问题。这些建议需要政府、监管机构、制药公司和学术界共同努力才能在实践中实施。虽然ML为药物安全带来了变革潜力,但其在现实世界中的实施面临伦理、监管和技术障碍。政策必须确保模型透明度、促进公平,并支持ML采用的基础设施。通过跨学科协调和基于证据的政策制定,利益相关者可以负责任地推进ML在药物研发中的应用,以改善患者预后。

相似文献

1
Applying Machine Learning Techniques to Predict Drug-Related Side Effect: A Policy Brief.
Inquiry. 2025 Jan-Dec;62:469580251335805. doi: 10.1177/00469580251335805. Epub 2025 Jun 13.
2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
Machine learning and public health policy evaluation: research dynamics and prospects for challenges.
Front Public Health. 2025 Jan 30;13:1502599. doi: 10.3389/fpubh.2025.1502599. eCollection 2025.
6
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.
7
Challenges in adopting health technology assessment for evidence-based policy in Iran: a qualitative study.
J Health Popul Nutr. 2025 Apr 23;44(1):134. doi: 10.1186/s41043-025-00887-2.
8
Artificial intelligence in hospital infection prevention: an integrative review.
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.
10
Enhancing cancer-supportive care through virtual reality: a policy brief.
Health Res Policy Syst. 2025 Apr 29;23(1):52. doi: 10.1186/s12961-025-01332-w.

本文引用的文献

1
Enhancing interpretability and accuracy of AI models in healthcare: a comprehensive review on challenges and future directions.
Front Robot AI. 2024 Nov 28;11:1444763. doi: 10.3389/frobt.2024.1444763. eCollection 2024.
2
Predicting adverse drug event using machine learning based on electronic health records: a systematic review and meta-analysis.
Front Pharmacol. 2024 Nov 13;15:1497397. doi: 10.3389/fphar.2024.1497397. eCollection 2024.
4
Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review.
Pharmaceuticals (Basel). 2024 Jun 17;17(6):795. doi: 10.3390/ph17060795.
5
Recent progress in machine learning approaches for predicting carcinogenicity in drug development.
Expert Opin Drug Metab Toxicol. 2024 Jul;20(7):621-628. doi: 10.1080/17425255.2024.2356162. Epub 2024 May 27.
6
The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives.
Drug Des Devel Ther. 2023 Sep 6;17:2691-2725. doi: 10.2147/DDDT.S424991. eCollection 2023.
7
Considerations for addressing bias in artificial intelligence for health equity.
NPJ Digit Med. 2023 Sep 12;6(1):170. doi: 10.1038/s41746-023-00913-9.
8
Making the most effective use of available computational methods for drug repositioning.
Expert Opin Drug Discov. 2023 May;18(5):495-503. doi: 10.1080/17460441.2023.2198700. Epub 2023 Apr 6.
10
Exploring the Hazards of Scaling Up Clinical Data Analyses: A Drug Side Effect Discovery Case Report.
AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:180-189. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验