de Vries Stijn T, Köbel Tania S, Sanal Ahmet, Schindler Daniel
Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany.
Center for Synthetic Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 14, Marburg 35032, Germany.
Synth Biol (Oxf). 2024 Nov 7;9(1):ysae016. doi: 10.1093/synbio/ysae016. eCollection 2024.
Golden Gate cloning has become one of the most important DNA assembly strategies. The construction of standardized and reusable part libraries, their assembly into transcription units, and the subsequent assembly of multigene constructs is highly reliable and sustainable. Researchers can quickly construct derivatives of their assemblies or entire pathways, and importantly, the standardization of Golden Gate assemblies is compatible with laboratory automation. Most Golden Gate strategies rely on 4-nt overhangs generated by commonly used Type IIS enzymes. However, reduction to 3-nt overhangs allows the use of codons as fusion sites and reduces potential scar sequences. This is particularly important when studying biological functions, as additional nucleotides may alter the structure or stability of the transcribed RNA. To address this issue we use SapI, a Type IIS enzyme generating three nucleotide overhangs, for transcription unit assembly, allowing for codon-based fusion in coding sequences. We created a corresponding plasmid toolbox for basic part generation and transcription unit assembly, a workflow we term as is downstream compatible with the Modular Cloning standard developed by Sylvestre Marillonnet's group for standardized assembly of multigene constructs. However, the multigene construct plasmids may not be compatible for use with the model organism of choice. Therefore, we have developed a workflow called to rapidly generate Golden Gate acceptor plasmids. uses standardized plasmid parts that are assembled into Golden Gate acceptor plasmids using flexible linkers. This allows the systematic construction of acceptor plasmids needed to transfer assembled DNA into the organism of interest.
金门克隆已成为最重要的DNA组装策略之一。构建标准化且可重复使用的元件库、将其组装成转录单元以及随后组装多基因构建体的过程高度可靠且可持续。研究人员可以快速构建其组装体的衍生物或完整途径,重要的是,金门组装的标准化与实验室自动化兼容。大多数金门策略依赖于常用的IIS型酶产生的4个核苷酸的突出端。然而,将突出端减少到3个核苷酸允许使用密码子作为融合位点并减少潜在的疤痕序列。在研究生物学功能时,这一点尤为重要,因为额外的核苷酸可能会改变转录RNA的结构或稳定性。为了解决这个问题,我们使用SapI(一种产生三个核苷酸突出端的IIS型酶)进行转录单元组装,从而在编码序列中实现基于密码子的融合。我们创建了一个相应的质粒工具箱用于基本元件生成和转录单元组装,我们将这个工作流程称为 ,它在下游与西尔维斯特·马里洛内特小组开发的用于多基因构建体标准化组装的模块化克隆标准兼容。然而,多基因构建体质粒可能与所选的模式生物不兼容。因此,我们开发了一种称为 的工作流程来快速生成金门受体质粒。 使用标准化的质粒元件,这些元件通过柔性接头组装成金门受体质粒。这允许系统地构建将组装好的DNA转移到感兴趣的生物体中所需的受体质粒。