CRCT, Université de Toulouse, Institut national de la santé et de la recherche médicale (Inserm), Centre national de la recherche scientifique (CNRS), Université Toulouse III-Paul Sabatier, Centre de Recherches en cancérologie de Toulouse, Toulouse, France.
Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
Front Immunol. 2024 Oct 31;15:1394965. doi: 10.3389/fimmu.2024.1394965. eCollection 2024.
Lung cancer is the leading cause of cancer death worldwide, with poor survival despite recent therapeutic advances. A better understanding of the complexity of the tumor microenvironment is needed to improve patients' outcome.
We applied a computational immunology approach (involving immune cell proportion estimation by deconvolution, transcription factor activity inference, pathways and immune scores estimations) in order to characterize bulk transcriptomics of 62 primary lung adenocarcinoma (LUAD) samples from patients across disease stages. Focusing specifically on early stage samples, we validated our findings using an independent LUAD cohort with 70 bulk RNAseq and 15 scRNAseq datasets and on TCGA datasets.
Through our methodology and feature integration pipeline, we identified groups of immune cells related to disease stage as well as potential immune response or evasion and survival. More specifically, we reported a duality in the behavior of immune cells, notably natural killer (NK) cells, which was shown to be associated with survival and could be relevant for immune response or evasion. These distinct NK cell populations were further characterized using scRNAseq data, showing potential differences in their cytotoxic activity.
The dual profile of several immune cells, most notably T-cell populations, have been discussed in the context of diseases such as cancer. Here, we report the duality of NK cells which should be taken into account in conjunction with other immune cell populations and behaviors in predicting prognosis, immune response or evasion.
肺癌是全球癌症死亡的主要原因,尽管最近有了治疗进展,但患者的生存率仍较差。为了改善患者的预后,需要更好地了解肿瘤微环境的复杂性。
我们应用了一种计算免疫学方法(涉及通过去卷积估计免疫细胞比例、转录因子活性推断、途径和免疫评分估计),以描述来自不同疾病阶段的 62 例原发性肺腺癌 (LUAD) 患者的大量转录组学数据。我们特别关注早期阶段的样本,使用具有 70 个批量 RNAseq 和 15 个 scRNAseq 数据集的独立 LUAD 队列以及 TCGA 数据集对我们的发现进行了验证。
通过我们的方法和特征集成管道,我们确定了与疾病阶段相关的免疫细胞群,以及潜在的免疫反应或逃逸和存活。更具体地说,我们报告了免疫细胞行为的二元性,特别是自然杀伤 (NK) 细胞,它与存活相关,可能与免疫反应或逃逸有关。这些不同的 NK 细胞群体使用 scRNAseq 数据进一步进行了表征,显示出其细胞毒性活性的潜在差异。
几种免疫细胞的双重特征,尤其是 T 细胞群体,在癌症等疾病的背景下已被讨论过。在这里,我们报告了 NK 细胞的二元性,在预测预后、免疫反应或逃逸时,应与其他免疫细胞群体和行为一起考虑。