Suppr超能文献

混合细胞去卷积技术的进展使对空间转录组数据中细胞类型的定量成为可能。

Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data.

机构信息

NanoString Technologies, Seattle, WA, USA.

出版信息

Nat Commun. 2022 Jan 19;13(1):385. doi: 10.1038/s41467-022-28020-5.

Abstract

Mapping cell types across a tissue is a central concern of spatial biology, but cell type abundance is difficult to extract from spatial gene expression data. We introduce SpatialDecon, an algorithm for quantifying cell populations defined by single cell sequencing within the regions of spatial gene expression studies. SpatialDecon incorporates several advancements in gene expression deconvolution. We propose an algorithm harnessing log-normal regression and modelling background, outperforming classical least-squares methods. We compile cell profile matrices for 75 tissue types. We identify genes whose minimal expression by cancer cells makes them suitable for immune deconvolution in tumors. Using lung tumors, we create a dataset for benchmarking deconvolution methods against marker proteins. SpatialDecon is a simple and flexible tool for mapping cell types in spatial gene expression studies. It obtains cell abundance estimates that are spatially resolved, granular, and paired with highly multiplexed gene expression data.

摘要

对空间生物学来说,绘制组织中的细胞类型图谱是一个核心关注点,但从空间基因表达数据中提取细胞类型丰度具有一定难度。我们介绍了 SpatialDecon,这是一种在空间基因表达研究区域内对单细胞测序定义的细胞群体进行量化的算法。SpatialDecon 结合了基因表达去卷积的几项改进。我们提出了一种利用对数正态回归和建模背景的算法,其性能优于经典最小二乘法。我们为 75 种组织类型编译了细胞特征矩阵。我们确定了一些基因,其在癌细胞中的最小表达使它们适合在肿瘤中进行免疫去卷积。我们使用肺癌肿瘤创建了一个数据集,用于针对标记蛋白对去卷积方法进行基准测试。SpatialDecon 是一种用于在空间基因表达研究中绘制细胞类型图谱的简单而灵活的工具。它可以获得具有空间分辨率、粒度和高度多重化基因表达数据的细胞丰度估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bd0/8770643/5a3ea17c29b4/41467_2022_28020_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验