Suppr超能文献

整合空间转录组学和单细胞核RNA测序数据可增强与阿尔茨海默病相关表型的差异基因表达分析结果。

Integrating spatial transcriptomics and snRNA-seq data enhances differential gene expression analysis results of AD-related phenotypes.

作者信息

Tang Shizhen, Liu Shihan, Buchman Aron S, Bennett David A, De Jager Philip L, Hu Jian, Yang Jingjing

出版信息

medRxiv. 2024 Nov 18:2024.11.18.24317499. doi: 10.1101/2024.11.18.24317499.

Abstract

BACKGROUND

Spatial transcriptomics ( ) data provide spatially-informed gene expression for studying complex diseases such as Alzheimer's disease ( ). Existing studies using ST data to identify genes with spatially-informed differential gene expression ( ) of complex diseases have limited power due to small sample sizes. Conversely, single-nucleus RNA sequencing ( ) data offer larger sample sizes for studying cell-type specific ( ) DGE but lack spatial information. In this study, we integrated ST and snRNA-seq data to enhance the power of spatially-informed CTS DGE analysis of AD-related phenotypes.

METHOD

First, we utilized the recently developed deep learning tool to infer the spatial location of ∼1.5M cells from snRNA-seq data profiled from dorsolateral prefrontal cortex ( ) tissue of postmortem brains in the ROS/MAP cohorts. Spatial locations of six cortical layers that have distinct anatomical structures and biological functions were inferred. Second, we conducted cortical-layer specific ( ) and CTS DGE analyses for three quantitative AD-related phenotypes -- β-amyloid, tangle density, and cognitive decline. CLS-CTS DGE analyses were conducted based on linear mixed regression models with pseudo-bulk scRNA-seq data and inferred cortical layer locations.

RESULTS

We identified 450 potential CLS-CTS significant genes with nominal p-values<10 , including 258 for β-amyloid, 122 for tangle density, and 127 for cognitive decline. Majority of these identified genes, including the ones having known associations with AD (e.g., , , and ), cannot be detected by traditional CTS DGE analyses without considering spatial information. We also identified 8 genes shared across all three phenotypes, 21 between β-amyloid and tangle density, 10 between cognitive decline and tangle density, and 10 between β-amyloid and cognitive density. Particularly, Gene Set Enrichment Analyses with the CLS-CTS DGE results of microglia in cortical layer-6 of β-amyloid identified 12 significant AD-related pathways.

CONCLUSION

Incorporating spatial information with snRNA-seq data detected significant genes and pathways for AD-related phenotypes that would not be identified by traditional CTS DGE analyses. These identified CLS-CTS significant genes not only help illustrate the pathogenesis of AD, but also provide potential CLS-CTS targets for developing therapeutics of AD.

摘要

背景

空间转录组学数据提供了空间分辨的基因表达信息,用于研究诸如阿尔茨海默病等复杂疾病。由于样本量较小,现有的使用空间转录组学数据来识别复杂疾病中具有空间分辨差异基因表达的基因的研究效能有限。相反,单核RNA测序数据为研究细胞类型特异性差异基因表达提供了更大的样本量,但缺乏空间信息。在本研究中,我们整合了空间转录组学和单核RNA测序数据,以提高对阿尔茨海默病相关表型进行空间分辨的细胞类型特异性差异基因表达分析的效能。

方法

首先,我们利用最近开发的深度学习工具,从ROS/MAP队列中死后大脑背外侧前额叶皮质组织的单核RNA测序数据推断约150万个细胞的空间位置。推断出具有不同解剖结构和生物学功能的六个皮质层的空间位置。其次,我们针对三种与阿尔茨海默病相关的定量表型——β淀粉样蛋白、缠结密度和认知衰退,进行了皮质层特异性和细胞类型特异性差异基因表达分析。基于线性混合回归模型和推断的皮质层位置,使用伪批量单细胞RNA测序数据进行皮质层特异性细胞类型特异性差异基因表达分析。

结果

我们鉴定出450个潜在的皮质层特异性细胞类型特异性显著基因,其名义p值<10⁻⁵,其中258个与β淀粉样蛋白相关,122个与缠结密度相关,127个与认知衰退相关。这些鉴定出的基因中的大多数,包括那些已知与阿尔茨海默病相关的基因(例如, 、 和 ),在不考虑空间信息的传统细胞类型特异性差异基因表达分析中无法检测到。我们还鉴定出在所有三种表型中共享的8个基因,在β淀粉样蛋白和缠结密度之间共享21个基因,在认知衰退和缠结密度之间共享10个基因,在β淀粉样蛋白和认知密度之间共享10个基因。特别是,对β淀粉样蛋白皮质层6中微胶质细胞的皮质层特异性细胞类型特异性差异基因表达结果进行基因集富集分析,确定了12条与阿尔茨海默病相关的显著途径。

结论

将空间信息与单核RNA测序数据相结合,检测到了与阿尔茨海默病相关表型的显著基因和途径,而这些在传统的细胞类型特异性差异基因表达分析中无法识别。这些鉴定出的皮质层特异性细胞类型特异性显著基因不仅有助于阐明阿尔茨海默病的发病机制,还为开发阿尔茨海默病治疗方法提供了潜在的皮质层特异性细胞类型特异性靶点。

相似文献

8
Pharmacotherapies for sleep disturbances in dementia.痴呆症睡眠障碍的药物治疗
Cochrane Database Syst Rev. 2016 Nov 16;11(11):CD009178. doi: 10.1002/14651858.CD009178.pub3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验